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Abstract. In order to properly test software, test data of a certain qual-
ity is needed. However, useful test data is often unavailable: Existing or
hand-crafted data might not be diverse enough to enable desired test
cases. Furthermore, using production data might be prohibited due to
security or privacy concerns or other regulations. At the same time, ex-
isting tools for test data generation are often limited.
In this paper, we evaluate to what extent constraint logic programming
can be used to generate test data, focusing on strings in particular. To
do so, we introduce a prototypical CLP solver over string constraints. As
case studies, we use it to generate valid IBAN numbers, calendar dates
and specific data in JSON.

1 Introduction

Gaining test data for software tests is notoriously hard. Typical limitations in-
clude lack of properly formulated requirements or the combinatorial blowup caus-
ing an impractically large amount of test cases needed to cover the system under
test (SUT). When testing applications such as data warehouses, difficulties stem
from the amount and quality of test data available and the volume of data needed
for realistic testing scenarios [9]. Artificial test data might not be diverse enough
to enable desired test cases [15], whereas the use of real data might be prohibited
due to security or privacy concerns or other regulations [18], e.g., the ISO/IEC
27001 [17]. Further challenges have been identified by Khan and ElMadi [20].

In consequence, to properly test applications one often has to resort to arti-
ficial test data generation [18]. However, existing tools are limited as they
– generate data that does not cover the desired scenarios [15],
– are specialized and lack options for configuration and adaptation [16], and
– generate an amount of data that is unrealistic for the SUT [29].

In this paper, we evaluate to what extent constraint logic programming could
be used for test data generation, in particular for generating strings. We are not
concerned with software testing itself.



2 Test Data

The International Software Testing Qualifications Board (ISTQB) describes test
data as data created or selected to satisfy the preconditions and inputs to execute
one or more test cases [30]. Test data may belong to the following categories:

– status data, files or surrounding systems required for a reusable start state,
– input data transferred to a test object during test execution,
– output data returned by a test object after execution,
– production data, which is deducted from the production system.

Production data is often used for testing as it provides obvious test cases and
can be gathered easily. However, using production data does not lead to thorough
testing, e.g., it never contains dates in the future. While production data can
be anonymized, it is hard to guarantee that de-anonymization is impossible.
Furthermore, production data may be biased.

Those problems can be solved by generating synthetic data. The implemen-
tation of a test data generator for each specific problem is cumbersome. One just
wants to describe the problem at hand without implementing the actual data
generation. We therefore consider constraint programming to be appropriate for
implementing general test data generators. In particular, relying on constraint
programming provides a number of further benefits common to declarative lan-
guages: specification of data and generating programs are more closely related
and maintainability is increased. Furthermore, constraint-based and logic pro-
gramming allows to easily extend given specifications by further constraints and
thus increases extensibility and combinability.

However, generating synthetic data remains a complex task as it involves
thoroughly specifying constraints the data needs to fulfill in order to derive high
quality test data.

2.1 Test Data Generators

The generation of synthetic test data can be supported by different test data gen-
erators [30]: Database-based generators synthesize data according to database
schemata or create partial copies of database contents, i.e., they rely on produc-
tion data. Interface-based generators analyze the test object’s API and determine
the definition areas of input parameters to derive test data from. In this context,
test oracles cannot be derived.

Code-based generators take the source code of the SUT into account, which
has disadvantages. For instance, it prevents oracle generation and is unable to
work with source code that is not available (e.g., for foreign libraries). Fur-
thermore, code-based generators are a weak test base, especially lacking the
intellectual redundancy necessary for testing (four-eyes principle) [27], i.e., the
understanding of how a system is supposed to work and how it is implemented
are necessarily identical if tests are generated purely based on code.

Specification-based generators generate test data and oracles based on spec-
ifications written in a formal notation. A specification based generator could



thus generate data that replaces production data. The quality of the test data
is ensured by the model and the correctness of the solver. This includes quality
aspects such as conformity and accuracy. To build such a generator, constraint
solving over all needed data types is required.

2.2 Requirements Towards Solvers

To gain a sensible set of requirements for a string constraint solver for test data
generation, we decided to look at the feature set of Oracle SQL. The reasoning
behind this is as follows: SQL was designed for the description of complex data
flows and is therefore suited as a modeling language for test data generation [22].
It is widely used by developers, test data specialists and technical testers, i.e.,
they would be able to use it as a possible input language for generation tools.
Additionally, SQL statements can easily be extracted from source code and can
thus be used to automatically generate test data for given applications. Further-
more, SQL is declarative and offers a good level of abstraction.

There are several types of strings in Oracle SQL4, in particular, unbounded
unicode strings. In addition, other data types are required for practical test
data: integers, fixed point numbers, reals and dates. There are no booleans in
SQL, however, booleans ease encoding complex SQL conditions into constraints.
Regarding BLOBs (e.g., images stored inside the database), we are so far not
interested in supporting them, since SQL does not provide operations on them
and their semantics are usually invisible to the applications.

Oracle SQL lists 54 functions on strings5. The ones we are interested in are

– CONCAT: concatenation of strings,
– LENGTH: returns the length of a string,
– REGEXP: tests, whether a string matches a given regular expression or not,
– SUBSTRING: returns a substring with given start position and length,
– TO_NUMBER: convert a string to number and vice versa.

Other operations can often be implemented with these functions or are not
of interest for test data generation. REGEXP requires the solver to process
regular expressions. The constraint handlers for all types must interwork, since
dependencies can exist between variables of different types. While we expect
correctness, we cannot expect (refutation) completeness, since once all desired
operations are added the problem becomes undecidable [7].

3 Related Work & Alternative Approaches

In the following, we will briefly present alternative approaches to constraint logic
programming. For a selection of alternative solvers, we will discuss their imple-
mentation paradigms, in order to later compare to constraint logic programming.
4 https://docs.oracle.com/en/database/oracle/oracle-database/19/cncpt/
tables-and-table-clusters.html#GUID-A8F3420D-093C-449F-87E4-6C3DDFA8BCFF

5 https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/
Functions.html#GUID-D079EFD3-C683-441F-977E-2C9503089982

https://docs.oracle.com/en/database/oracle/oracle-database/19/cncpt/tables-and-table-clusters.html#GUID-A8F3420D-093C-449F-87E4-6C3DDFA8BCFF
https://docs.oracle.com/en/database/oracle/oracle-database/19/cncpt/tables-and-table-clusters.html#GUID-A8F3420D-093C-449F-87E4-6C3DDFA8BCFF
https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/Functions.html#GUID-D079EFD3-C683-441F-977E-2C9503089982
https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/Functions.html#GUID-D079EFD3-C683-441F-977E-2C9503089982


3.1 autogen

autogen [10] is a specification-based test data generator. autogen is able to di-
rectly use SQL as an input language. In order to generate test data from it,
SQL is considered as specification of the SUT and is converted into constraints.
autogen uses an independently developed string constraint solver called CLPQS,
which handles all requirements stated in Section 2.2. To support the data types
of SQL, autogen interacts with a set of different solvers. In particular, it relies on
CLP(Q) and CLP(R) for rationals and reals, which have some limitations when
it comes to completeness. CLPQS represents domains as regular expressions.
One motivation for this paper is to experiment with different representations
and propagation algorithms.

3.2 MiniZinc

MiniZinc is a solver-independent modeling language for constraint satisfaction
and optimization problems. A MiniZinc model is compiled into a FlatZinc in-
stance which can be solved by a multitude of constraint solvers. An extension
of the MiniZinc modeling language with string variables and a set of built-in
constraints has been suggested by Amadini et al. [3]. String variables are defined
as words over the alphabet of ASCII characters and have a fixed, bounded or
unbounded length. Yet, strings are represented as bounded length arrays of inte-
gers when translating to FlatZinc. The MiniZinc model itself does allow strings
of unbounded length though. MiniZinc enables optimization over constraints
rather than just satisfiability and allows mixing constraints over different do-
mains. However, there are no direct conversions from other types to strings.

3.3 SMT Solvers

SMT solvers such as CVC4 [5] and Z3 [8] have been used for test case generation
in the context of programming languages [31]. Both solvers support constraints
over strings and regular expressions and are able to handle operations such as
concatenation, containment, replacement and constraining the length of strings.

In Z3’s original string solver, strings are represented as sequences over bit-
vectors. The solver itself is incomplete and relies on heuristics. In contrast, Z3-
str [39] introduces strings as primitive types. Z3-str leverages the incremental
solving approach of Z3 and can be combined with boolean and integer con-
straints. There have been several improvements of Z3-str in recent years [33,38,6].

CVC4’s string solver [24,25] allows mixing constraints over strings and the
integers. The authors present a set of algebraic techniques to solve constraints
over unbounded strings, usable for arbitrary SMT solvers.

Another SMT solver for string constraints is Trau [1], which, in contrast to
CVC4 and Z3, supports context-free membership queries and transducer con-
straints by using pushdown automata. Trau implements a Counter-Example
Guided Abstraction Refinement (CEGAR) framework, computing over- and



under-approximations to improve performance. Key idea in Trau is a tech-
nique called flattening [2], leveraging that (un)satisfiability can be shown using
witnesses of simple patterns expressable as finite automata.

3.4 Other Solvers

Kiezun et al. presented Hampi [21], a constraint solver over strings of fixed
length featuring a set of built-in constraints. Hampi is able to reason over regu-
lar languages. String constraints are encoded in bit-vector logic which are then
solved by the STP [13] bit-vector solver. At the expense of expressiveness, lim-
iting the length of strings enables a more restricted encoding, increasing the
performance by several orders of magnitude. However, a bit-vector encoding has
a larger memory consumption than using finite automata.

G-Strings [4] is an extension of the Gecode constraint solver [28]. Both
solvers accept strings of bounded but possibly unknown length. In contrast to
Gecode, strings are not represented using integer arrays but as a restricted lan-
guage of finite regular expressions. This prevents the static allocation of possibly
large integer arrays and thus improves performance.

Fu et al. introduced Simple Linear String Equations (SISE) [12], a formalism
for specifying constraints on strings of unbounded length, and presented the
constraint solver Sushi using finite automata to represent domains.

3.5 Summary

In summary, several approaches have been suggested for string constraints. How-
ever, no single approach is able to satisfactorily handle the requirements posed
for test data generators described in Section 2.2. A comparison of different solvers
considering the features described in Section 2.2 is shown in Table 1. The re-
quirement of a combined solver states that a direct conversion between strings
and other types is provided. As ConString has been developed specifically for
this problem domain, it naturally supports the most requirements.

4 Constraint Logic Programming Over Strings

We implement a constraint logic programming system for strings using Con-
straint Handling Rules (CHR) [11] on top of SWI-Prolog [37] called ConString.
We use classic constraint propagation to reduce variable domains. The system
supports strings of unbounded length and is coupled with CLP(FD), CLP(R)
and CLP(B) to handle the integers, reals and booleans respectively. While not all
SQL string operations are implemented yet, we plan to do so in the future. One
goal is to employ different techniques than CLPQS to compare and possibly im-
prove both solvers. We think CLP is adequate since there are many other solvers
to build up upon and since it provides access to all solutions using backtracking.

In the following, we present our encoding of string domains and discuss its ad-
vantages and drawbacks, followed by the currently featured constraints, selected
constraint handling rules and solver integrations.



Table 1. Features of constraint solvers. (3) indicates partial support or workaround.

Solver Strings Combined Solver

Unbounded Unicode SQL Operations Integer Boolean Real

CLPQS 3 3 3 3 3 (3)
MiniZinc 7 7 (3) 7 7 7

CVC4 3 7 3 3 7 7

Z3-str3 3 7 (3) 3 7 7

S3 3 7 3 3 3 7

Hampi 7 7 (3) 7 7 7

Sushi 3 3 3 7 7 7

G-Strings 7 7 (3) 7 7 7

Trau 3 7 3 3 7 7

4.1 Domain Definition

To fulfill the requirements posed in Section 2.2, we decided not to enforce a
fixed length of strings and to use regular expressions as input. The employed
alphabet consists of ASCII characters and some special characters like umlauts
and accented characters. Dynamic character matching is possible by specifying
ranges (e.g., [0-9a-f]), or by using the dot operator. We match a whitespace
in regular expressions by \s while actual whitespace characters can be used to
structure regular expressions without being part of the accepted language.

Further, we support the usual regular expression operators on characters,
i.e., quantity operators (*, + and ?) and the alternative choice operator (|). For
convenience, our regular expressions offer more strict repetition definitions noted
by {n} (exactly n times), {m,n} (m to n times) and {m,+} (at least m times).

4.2 Domain Representation

Since ConString is supposed to handle strings of unbounded length, we repre-
sent domains as finite automata as done by Golden et al. [14]. First, this allows
for a concise specification of regular languages with low memory consumption.
Second, finite automata support basic operations such as union, intersection,
concatenation or iteration and are closed under each of these operations. In
particular, we use non-deterministic finite automata with ε-transitions.

Since SWI-Prolog does not have a native library for handling finite automata,
we encode them as a self-contained term automaton_dom/4 consisting of a set
of states, a transition relation as well as a set of initial and final states. The
states are a coherent list of the integers 1 . . . n, n ∈ N. The transition relation is
implemented as a list of triples containing a state s1, a range of characters (might
contain a single character only) and a target state s2 reached after processing a
character from the range of characters in s1, e.g., (0, a, 1).

We implement the common operations on finite automata used for regular
languages as well as basic uninformed search algorithms used to label automata,



i.e., to find a word having an accepting run. The search is backtrackable providing
access to an automaton’s complete language.

Efficiency The chosen representation of finite automata has several drawbacks.
We use lists to store states and transitions providing linear time concatenation
and element access leading to a loss of performance, especially when labeling
automata. It would be desirable to use a data structure such as hashsets, which
provide amortized constant time performance for basic operations. However, such
a data structure is currently unavailable in SWI-Prolog6.

Another drawback is that we have to rename states when performing basic
operations on automata. For instance, the concatenation A1.A2 is implemented
by using the final states of A2 for the resulting automaton and adding an ε-
transition from all final states of A1 to all initial states of A2. In order to avoid
ambiguities, the states of A2 have to be renamed by shifting their identifier
names by the number of states in A1. This renaming is one of the main issues
for efficiency as it adds a linear time complexity component with respect to the
size of the second automaton to all the basic operations.

4.3 Constraint Handling Rules

We use CHR on top of SWI-Prolog providing the constraint store and propaga-
tion unit to reduce variable domains. Moreover, CHR serves as user interface.

The CHR language is committed-choice, i.e., once a rule is applied it cannot
be revoked by backtracking. Rules consist of three parts: a head, a guard and a
body. A rule is triggered as soon as the head matches constraints in the constraint
store. Guards allow imposing restrictions on rule execution. Finally, the body
consists of Prolog predicates and CHR constraints. Predicates are called as usual
while constraints are added to the constraint store, possibly triggering further
propagation. All available constraints are propagated until the constraint store
reaches a fix point. Solving fails if an empty string domain is discovered.

CHR provides three different kinds of rules: First, propagation rules of the
form head ==> guard | body, where the body is called if the guard is true. The
head constraints are kept. Simplification rules of the form head <=> guard |
body update the constraint store by replacing the head constraints by those de-
rived from the body. Simpagation rules of the form head1 \ head2 <=> guard
| body are combined rules, retaining the constraints of the first part of the head
while discarding those of the second part.

Our implementation currently supports several basic operations on regular
languages such as intersection, concatenation or iteration as well as a mem-
bership constraint, arithmetic length constraints (fixed or upper bound), string
to integer conversion, prefix, suffix and infix constraints and case sensitivity
constraints. For now, we ensure arc- and path-consistency of our constraints.
Variables can be labeled using str_label(+Vars) or str_labeling(+Options,
6 While SWI-Prolog has built-in support for dictionaries, element access is logarithmic
and updates are linear in size.



Listing 1. CHR rules for the membership constraint str_in/2.

1 str_in(S1, S2) <=>
2 string(S2) | gen_dom(S2, D), str_in(S1, D).
3 str_in(_, D) ==> is_empty(D) | fail.
4 str_in(Var ,D) ==> D = string_dom(Cst) | Var = Cst.
5 str_in(S, D1), str_in(S, D2) <=>
6 D1 \= D2 | intersection(D1 , D2 , D3), str_in(S, D3).
7 str_in(S, D1)\ str_in(S, D2) <=> D1 == D2 | true.

Listing 2. CHR rules for the concatenation constraint str_concat/3.

1 str_in(S1, D1), str_in(S2, D2), str_concat(S1, S2 , S3) ==>
2 concat(D1, D2 , D3), str_in(S3 , D3).
3 str_in(S1, D1), str_concat(S1, S1 , S3) ==>
4 concat(D1, D1 , D3), str_in(S3 , D3).

+Vars). As options, we currently support selecting the search strategy for au-
tomata (dfs, idfs, bfs) and any option on integer domains provided by SWI-
Prolog’s CLP(FD) library. In the following, we will describe selected constraint
handling rules in more detail.

The membership constraint is defined as shown in Listing 1. The first rule is
applied in case membership is called with a string or regular expression. Then,
a finite automaton representing the input domain is generated and the same
constraint is applied to this automaton domain. The second rule states that
whenever a domain is empty constraint solving should fail as no solution exists.
Third, in case the string domain becomes constant, we propagate the value to
the variable. The fourth rule joins two non-equal membership constraints for the
same variable by intersecting both domains and replacing the two constraints by
a single membership constraint. A final rule is used to remove one of two identical
membership constraints. Note that gen_dom/2 and intersection/3 are called
for internal domain computation and not added to the constraint store.

Concatenation is defined using two rules as shown in Listing 2. It relies on
the membership constraint by assuming that two str_in/2 refer to different
variables. The first rule defines the concatenation of two different string vari-
ables by concatenating their automata domains and adding a new membership
constraint for the result. Analogously, the second rule defines the concatenation
of the same string variable onto itself. In order to efficiently propagate a constant
string result to the first two arguments, we add a third rule using SWI-Prolog’s
string concatenation, e.g., string_concat(A, B, “test”), providing all solu-
tions on backtracking. If a candidate has been found, it is checked upon labeling
whether the candidate is accepted by the corresponding domains. If so, mem-
bership constraints are propagated assigning constant values to all arguments.



Listing 3. CHR rules for the infix constraint str_infix/2.

1 str_infix(S, IStr) <=>
2 string(IStr) | gen_dom(IStr , IDom), str_infix(S, IDom).
3 str_infix(S, IDom) <=>
4 any_char_dom(A), repeat(A, AStar),
5 concat(IDom , AStar , T), concat(AStar , T, ResDom),
6 str_in(S, ResDom).

The iteration operation str_repeat/[2,3,4] is defined as repeated con-
catenation. Case sensitivity operations are defined by setting up membership
constraints to generated domains accepting only upper or lower case characters.

The infix operation str_infix/2 for two string variables s1 and s2 is defined
by adding a membership constraint for s1 to be an element of the regular lan-
guage L(.∗).L(s2).L(.∗) as shown in Listing 3. Again, the first rule is a wrapper
generating a finite automaton domain from a string or regular expression. Prefix
and suffix operations are defined in the same manner.

4.4 Integration of CLP(FD), CLP(R) and CLP(B)

In order to enable the generation of richer test data and allow for a greater
coverage of test scenarios, we extend ConString to support combining con-
straints over different domains. In particular, we support constraints over finite
domain integers using CLP(FD) [34], constraints over reals using CLP(R) and
constraints over booleans using CLP(B) [35,36]. As an interface, we provide the
bidirectional constraints str_to_int/2, str_to_real/2 and str_to_bool/2.

The implementation of str_to_int/2 consists of four rules as shown in List-
ing 4. In order to detect failure early we check for inequality if both arguments
are constants. If only the integer variable is a constant, we convert and assign the
value to the string. In the third rule, a constant string is assigned to the integer
variable. Note that number_string/2 removes leading zeros by default. Besides
that, we provide a rule to fail for constant strings not representing integers.

We additionally provide a second implementation str_to_intl/2 allowing
leading zeros in order for constraints such as str_to_int(“00”, 0) to hold.
This is achieved by additionally concatenating the domain of 0∗ to IDom in line
6 of Listing 4.

The integration of CLP(R) and CLP(B) is implemented analogously prop-
agating membership constraints to a specific backend if variables are constant
values. Again, alternative implementations are provided allowing an arbitrary
amount of leading zeros when converting from string to boolean or real.

5 Case Studies

In this section, we will present three case studies of using ConString: a genera-
tion of IBANs, calendar dates, and data tables in JSON. Finally, we will conclude



Listing 4. Basic rules for the integration of CLP(FD) propagating constant values.

1 str_to_int(S,I) ==>
2 string(S), integer(I), number_string(SInt , S), I \== SInt |
3 fail.
4 str_to_int(S,I) ==>
5 integer(I), number_string(I, IString) |
6 cst_str_dom(IString , IDom), str_in(S, IDom).
7 str_to_int(S,I), str_in(S,D) ==>
8 D = string_dom(CstString),
9 number_string(CstInteger , CstString) | I #= CstInteger.
10 str_to_int(S,_), str_in(S,D) ==>
11 D = string_dom(CstString), \+ number_string(_, CstString) |
12 fail.

this section with a discussion of the benefits from constraint logic programming
compared to typical test data generators.

5.1 Generation of IBAN Numbers

As a case study, we specify the computation of valid International Bank Account
Numbers (IBANs) as a constraint system as done by Friske and Ehmke [10]. This
example is of interest as it yields a relatively large search space and requires the
conversion between the integers and strings. Generated data can, for instance,
be used to initialize unit tests of components validating IBANs. This example is
an excerpt of a project where an interface between a SEPA credit transfer and
a micro-service managing financial push notifications has been tested.

A German IBAN consists of 22 characters which are characterized as follows:
The first two characters represent the country code (here, the constant “DE”)
while the third and fourth characters are a checksum. The remaining 18 digits
represent the Basic Bank Account Number (BBAN).

We can compute valid IBANs using a given country code as follows: Represent
the country code as a digit where “A” equals 10, “B” equals 11, etc. The German
country code “DE” is hence encoded as 1314. Concatenate two zeros to the
encoded country code (i.e., 131400) and prepend the BBAN. This forms a 24
digit number, σb. In order to compute the valid checksum σc, the constraint
98− (σb mod 97) = σc must hold. Finding a solution binds the BBAN to a value
in its domain and provides its corresponding checksum σc. To derive the actual
BBAN, remove the suffix “131400”. Finally, concatenate the computed checksum
σc with the BBAN and prepend the country code “DE” as a string.

The complete constraint system is shown in Listing 5. Lines 3 and 4 define the
BBAN and the 24 digits number σb respectively. The constraint for computing
σc is set in line 5. The remaining specification is straightforward as described
above. Note that we allow leading zeros for the checksum’s string.



Listing 5. Constraint system to compute all valid german IBANs.

1 iban(IBAN) :-
2 SigmaC in 0..96,
3 BBAN in 100000000000000000..999999999999999999 ,
4 SigmaB #= BBAN * 1000000 + 131400 ,
5 SigmaB mod 97 #= SigmaC ,
6 str_label ([SigmaB , SigmaC ]),
7 str_to_int(BBANStr , BBAN),
8 CheckSum #= 98 - SigmaC ,
9 str_to_intl(CheckSumStr , CheckSum),
10 str_size(CheckSumStr , 2),
11 str_in(DE, "DE"),
12 str_concat(DE, CheckSumStr , IBANPrefix),
13 str_concat(IBANPrefix , BBANStr , IBAN),
14 str_label ([IBAN]).

Table 2. Benchmarks for generating IBANs. Walltime in seconds.

Amount 1 10 100 1,000 10,000 100,000 250,000

CLPQS 0.006 0.024 0.240 2.029 32.163 1525.457 9261.204
ConString 0.007 0.038 0.105 1.066 26.573 1342.597 9841.225

For benchmarking, we generate sets of IBANs of varying sizes, using an Intel
Core i7-6700K with 16GiB RAM.We used SWI-Prolog’s predicate statistics/2
to measure the walltime. Table 2 shows the median time of five independent
runs and compares our solver with CLPQS. As can be seen, ConString per-
forms overall slightly better than CLPQS with the exception of the generation
of 250,000 IBANs. Up to one thousand samples both solvers appear to scale
linearly. Notable exception is the jump from 10,000 to 100,000 generated sam-
ples. Here, both solvers scale worse: CLPQS scales with a factor of 47, whereas
ConString takes 50 times as long as for generating 10,000 IBANs instead of
the expected factor of 10. At least for ConString, experimental results have
shown that this non-linear growth is caused by SWI-Prolog’s CLP(FD) library.

We also encoded the example in SMT-LIB to compare ConString and
CLPQS with Z3-str3 and CVC4. Unfortunately, CVC4 did not return a result
but timed out after 600 seconds. Z3-str3 found a single solution in around 0.2
seconds. We were unable to compute multiple solutions using Z3-str3 as the
solver timed out searching for further ones.

5.2 Generation of Calendar Dates

Another example is the generation of various date expressions, which is of interest
for testing for many tools which need to parse valid dates and reject invalid



Listing 6. Constraint system to compute diverse calendar date expressions.

1 date(Date) :-
2 WeekDay str_in "Monday|Tuesday |...| Sunday",
3 Month str_in "January|February |...| December",
4 Day str_in "[1 -9]|[1 -2][0 -9]|3[0 -1]",
5 Year str_in "[1 -9][0 -9]{0 ,3}",
6 MonthDay match Month + "_" + Day ,
7 MonthDayYear match MonthDay + ",_" + Year \/ MonthDay ,
8 FullDate match WeekDay + ",_" + MonthDayYear ,
9 Date match MonthDayYear \/ FullDate \/ WeekDay ,
10 str_label ([Date]).

Table 3. Benchmarks for generating date expressions. Walltime in seconds.

Amount 1 10 100 1,000 10,000 100,000

CLPQS 0.000 0.000 0.000 0.000 0.000 0.010
ConString 0.010 0.010 0.010 0.011 0.080 0.965

ones. The accepted expressions are of either of the forms “Tuesday”, “August
30”, “Tuesday, August 30”, “August 30, 2016”, or “Tuesday, August 30, 2016”.

Listing 6 shows the corresponding constraints, taken from [19, Section 3].
The constraint system consists of defining the basic building blocks first: the
weekdays, the months, and valid year numbers. Thus, only the years 1 to 9999
are accepted. Further, the more complex parts are constructed, each consisting
of a combination of operations on variables constrained before. This leads up to
the final definition of Date as a union of all possible notations.

Note that we employ a shorthand notation for the setup of constraints.
MonthDayYear for example has to match the language defined by the union
of the MonthDay domain and the concatenation of MonthDay, a separator, and
the Year. This notation enables a more readable definition of constraint systems.

Table 3 shows a brief performance evaluation as done in Section 5.1. As can
be seen, CLPQS is notably faster than ConString. The automata created by
ConString are probably large due to the alternative choice operator and the
union operator leading to a lack of performance when labeling data. Reducing the
size of automata, e.g., by removing ε-transitions, will likely increase performance.

We also encoded the example in SMT-LIB to compare ConString and
CLPQS with Z3-str3 and CVC4. Z3 found a single solution in around 0.070
seconds while CVC4 took around 0.084 seconds. Again, we were unable to com-
pute multiple solutions with both solvers as they timed out.

5.3 Generation of Data in JSON

As a further and more involved example, we want to generate data describing
different colors in JavaScript Object Notation (JSON). A color should be de-



Listing 7. An exemplary dataset in JSON containing the colors black and white.

1 { "colors": [
2 { "color": "black",
3 "code": { "rgb": [0,0,0], "hex": "#000000" } },
4 { "color": "white",
5 "code": { "rgb": [255 ,255 ,255] , "hex": "#FFFFFF" } } ] }

scribed by a name, a six byte hexadecimal code and a corresponding RGB color
code. An exemplary dataset in JSON containing the colors black and white is
shown in Listing 7.

For the given example, we want to ensure that the hexadecimal and RGB
code of a color match each other. Further, each color in the set of colors should
be unique. The latter requirement entails the need of two further constraints not
mentioned in this paper yet: First, we need to be able to state the difference
between two string variables (str_diff/2). This is achieved by a propagation
rule which is triggered if both string variables have been labeled, i.e., they hold
constant values, and checks for exact inequality (\==/2) between both values. If
both values are equal, ConString backtracks and searches for different values
effectively restarting the computation from the last choicepoint. Second, we need
to be able to state the difference of strings in between a list of string variables
(str_all_diff/2). This is achieved by a simplification rule propagating pairwise
inequality constraints for each pair of elements.

The constraint system used to generate datasets in JSON as described above
is shown in Listing 8. First, we generate a given amount of hexadecimal color
codes which have to be all different (lines 20 and 21). After labeling all hex-
adecimal color codes, we generate the corresponding RGB color codes using
SWI-Prolog’s predicate hex_bytes/2. We then use the labeled hexadecimal and
RGB color codes to generate the strings describing a dataset entry, which is
achieved by the predicate get_color_entry/3, and join all strings by concate-
nation (list_of_colors_concat/3). Finally, we further concatenate strings to
the generated string concatenation describing single dataset entries (line 24) to
obtain the desired data format in JSON. This last step shows the difference be-
tween test data generation and data structure generation. In theory, only the
first is needed to gain sensible test data, as the results can easily be stored in
various data structures depending on the requirements for the SUT. However,
integrating data structure generation into the constraint problem would render
data generation more self-contained and could thus be desirable for users. Both
data generation and data structure generation are strictly split inside the con-
straint system, i.e., there are two distinct blocks of constraints which are labeled
individually (see labelings in line 21 and 25 of Listing 8).

To evaluate the performance of ConString as done for the other case stud-
ies, we generate one dataset for varying amounts of dataset entries, i.e., colors.
However, we noticed several performance bottlenecks in both, ConString and



Listing 8. The constraint system to generate datasets in JSON containing colors.

1 get_color_entry(Hex , RgbList , Color) :-
2 term_string(RgbList , Rgb1),
3 escape_special_characters(Rgb1 , Rgb),
4 Prefix = "\\{\" color \":\" test \",\" code \":\\{\" rgb\":",
5 Color match Prefix + Rgb + " ,\"hex \":#" + Hex + "\\}\\}".
6 list_of_colors_concat_acc ([], [], Acc , Acc).
7 list_of_colors_concat_acc ([Hex|HT], [Rgb|RT], Acc , Concat) :-
8 get_color_entry(Hex , Rgb , Color),
9 NewAcc = ’+’(Acc , ’+’(",", Color)),
10 list_of_colors_concat_acc(HT, RT , NewAcc , Concat).
11 list_of_colors_concat ([], [], "").
12 list_of_colors_concat ([Hex|HT], [Rgb|RT], Concat) :-
13 get_color_entry(Hex , Rgb , Color),
14 list_of_colors_concat_acc(HT, RT , Color , Concat).
15 list_of_hex_codes (0, []) :- !.
16 list_of_hex_codes(C, [HexCode|T]) :-
17 str_in(HexCode , "([A-F]|[0 -9]) {6}"),
18 C1 is C-1, list_of_hex_codes(C1 , T).
19 json_colors(Amount , JSON) :-
20 list_of_hex_codes(Amount , LHex),
21 str_all_diff(LHex), str_label(LHex),
22 maplist(hex_bytes , LHex , RgbList),
23 list_of_colors_concat(LHex , RgbList , ColorsConcat),
24 JSON match "\\{\" colors \":\\[" + ColorsConcat + "\\]\\}",
25 str_label ([JSON]).

Table 4. Benchmarks for generating datasets in JSON. Walltime in seconds.

Amount of Colors 1 2 3 4 5 10 50 100

ConString 0.005 0.003 0.004 0.006 0.007 0.021 3.878 93.196

CLPQS, when trying to benchmark the JSON generation. ConString displayed
a quadratic increase in runtime with respect to the number of variables as can be
seen in Table 4. autogen’s runtime was somewhat erratic, i.e., it was sometimes
faster for a higher (even) number of colors. Overall, autogen’s runtime was less
predictable than the one of ConString. We will discuss performance bottle-
necks of both solvers and how they can be coped with in the following three
paragraphs.

Order of Constraints Although constraint systems are declarative, the order
of constraints influences performance. For instance, in the given example, we
have to ensure that the hexadecimal and RGB color codes are constant values
(lines 21 and 22) before setting up the concatenation constraints. Otherwise,



Listing 9. An example showing a possible bottleneck for performance when imple-
menting str_all_diff/2.

1 str_in(X, "1|2"), str_in(Y, "1|2"),
2 str_in(Z, "[0 -9]{0 ,1000}"),
3 str_all_diff ([X,Y,Z]), str_label ([X,Y,Z]).

performance drops drastically since large automata domains have to be created
holding variable references. As soon as such a variable reference is labeled, con-
catenation constraints are triggered and automata have to be intersected with
their prior automata domains (see Section 4.3, Listing 1) containing the un-
labeled variable references, ultimately leading to bad performance. Note that
within our framework, the intersection operation on finite automata is usually
the most complex operation when solving string constraints. If we evaluate the
concatenations after all necessary variables have been labeled (lines 23 and 24),
no intersections have to be computed on automata domains.

Performance of String Difference Currently, str_diff/2 is only triggered
if both arguments are constant strings and does not propagate any knowledge to
an unlabeled domain of a string variable. This is a bottleneck for performance
when using the str_all_diff/1 constraint. Since we only support a linear enu-
meration order by now, the solver has to backtrack a lot for large lists of variables
between labeling a string and checking for inequality. If all variables have the
same domain (e.g., as shown in Listing 8), the domain gets enumerated linearly
for each variable in the list until finding a new value that is different to the ones
labeled so far. For ConString, this leads to a runtime that grows quadratic
with the size of the list of variables. As future work, we want to investigate
propagating knowledge to domains instead of only checking inequality between
constant strings. In SWI-Prolog’s CLP(FD) library this corresponds to the con-
straints all_different/1, which behaves similar to our implementation, and
all_distinct/1, which propagates knowledge to unlabeled domains.

In order to improve upon simple pairwise difference computation, it is essen-
tial to propagate str_diff/2 as soon as the two involved variables are constant
values instead of waiting for all variables to be labeled. For instance, consider
Listing 9 with X and Y sharing a domain and Z whose domain is considerably
larger. When labeling the variables using a linear enumeration order, the first
assignment of X and Y is the same, i.e., the string “1”. If the pairwise difference
constraints are triggered after labeling, the equality of the first two variables is
only identified after labeling all three variables, with the last choicepoint being
in the labeling of Z although the variable is not involved in the conflict at all.
The solver would enumerate the domain of Z exhaustively, before detecting the
conflict. To counter this behaviour,one has to ensure that str_diff/2 is trig-
gered as soon as X and Y are labeled, possibly suspending an ongoing labeling of
variables.



Data Generation vs. Data Structure Generation Generating a full data
structure in JSON representation drastically increased the strain put on the
constraint solvers. Within a single labeling operation, the combined generation
of data and JSON representation caused a lot of unneeded backtracking through
the two problems. With the two labeling operations split up, performance was
increased while decreasing the declarativeness of the problem statement.

Overall, including the data structure generation in the constraint satisfac-
tion problem lead to a severe performance decline. In consequence, we suggest
splitting the generation of test data from storing it inside an appropriate data
structure for testing. While this reduces self-containment of the encoding, it has
several benefits as well:

– Constraints are considerably simpler, in particular, many concatenation con-
straints are avoided at all.

– Variables are less intertwined which reduces the evaluation time of consis-
tency and propagation algorithms.

– Flexibility in the enumeration order is increased which could open the way
for optimization.

5.4 Comparison to Test Data Generators

In the following we will give a brief comparison between data generation tools
based on constraint solving, such as autogen and ConString, and typical test
data generators, i.e., imperative implementations of enumeration algorithms. In
this section we have seen three case studies in which we applied our approach
of constraint logic programming to test data generation. While the IBAN exam-
ple in Section 5.1 is motivated by a real world application (cf. Friske & Ehmke
2019 [10]), it can easily be replicated by a typical test data generator not using a
declarative approach, as shown examplary in Listing 10. Such an IBAN generator
would probably also keep a linear runtime depending on the number of generated
IBANs, whereas we observed in Table 2 that ConString exhibits a non-linear
growth. However, if one is in need of generating IBANs with a certain check-
sum for testing purposes, the test data generator in Listing 10 would need to be
modified to account for the requirement. In contrast, with constraint program-
ming, e.g., as used by ConString and autogen, additional requirements can be
realized by simply adding a constraint, e.g., CheckSum #= DesiredChecksum.

The date example serves as data source to a common problem in program-
ming, that of parsing date inputs (e.g., by the user via a text field). Although the
generation itself can be done easily with a test data generator which randomly
chooses a style, a weekday, and a calendar day, the implementation in Listing 6
can easily be improved to generate only valid dates (e.g., a correct weekday or
matching calendar day per month) by adding some further specifications into
the constraint system.

In our third example, the color database in JSON, we generate a more strictly
defined data set. While the hexadecimal and the RGB color code in a single
dataset entry must match, all colors in a generated dataset need to be exclusive.



Listing 10. Pseudocode of an IBAN test data generator.

1 bban = 100000000000000000
2 while bban <= 999999999999999999:
3 bban_country = bban * 1000000 + 131400
4 checksum = 98 - (bban_country mod 97 )
5 iban = concat("DE", checksum , bban)
6 bban += 1
7 yield iban

In contrast to a classical imperative test data generator, in which one needs to
keep track of generated colors explicitly, our constraint-based approach enables a
more declarative implementation using difference constraints and backtracking.

In conclusion, traditional test data generators might run faster and can, de-
pending on the use case, be more suitable than a constraint solver. For highly
intertwined test data or requirements that are likely to change, a more declar-
ative approach based on constraint solving leads to a clearer specification of
the test data to be generated and allows for simple adaptation to requirement
changes. As seen in the calendar date example, using a declarative approach
allows constructing complex structures from simple building blocks. No further
control structures or instructions are required besides describing the data format.

Due to the intended use for test data generation, we have the strong belief
that such data driven development resonates more with the problem domain
than using, e.g., imperative programming languages. Thanks to Prolog’s off-the-
shelf backtracking capabilities, exhaustively traversing a search space is provided
by default and one does not depend on explicit loop constructs or caching of
results: each solution is found exactly once. Another benefit is the separation of
the definition of data and the search for solutions. Consider again the pseudocode
example shown in Listing 10. The enumeration order of calculated IBANs will
always be the same. To reach another order, the code again needs to be adapted.
On the other hand, the implementation for ConString shown in Listing 5
is independent of any enumeration order. The order can easily be changed by
passing a corresponding argument to str_labeling/2 as outlined in Section 4.3.

6 Way Forward & Future Work

6.1 An Efficient Backend

For classic domain propagation to work on strings, an efficient representation
of possible values is needed. So far, we represent automata as outlined in Sec-
tion 4.2. As discussed, this is not the most efficient approach, as certain algo-
rithms need to traverse the list of states or transitions to find a particular one.

Other known automaton libraries such as dk.brics.automaton [26] feature
more efficient representations and algorithms. However, these are usually based
on using pointers or objects and cannot easily be ported to Prolog for obvious



reasons. At the same time, connecting the Java or C ports of the library to our
Prolog system leads to all kinds of difficulties when it comes to proper handling
of backtracking. Moreover, Prolog programs are no longer declarative when using
stateful data structures without cloning data after each operation.

As future work, we want to experiment with porting dk.brics.automaton or
a comparable library to Prolog while retaining its efficiency. So far, we have
different approaches in mind. First, we could implement low-level data struc-
tures outside of Prolog (e.g., in C) and render them backtrackable using a thin
Prolog layer. Second, we could mimic the internal workings of the library, e.g.,
using attributed variables to store (mutable) class variables and links to other
“objects”. While this would avoid possible backtracking issues, it would not be
as idiomatic. Furthermore, we want to evaluate whether it is more efficient to
use deterministic finite automata or, in general, ε-free automata. Additionally,
we do not provide options for labeling, e.g., concerning the enumeration order.
Additional options like enumerating a string domain in alphabetical, reversed al-
phabetical or a randomized order will most likely improve performance for some
constraint satisfaction problems. This would also enable to provide different dis-
tributions of test data for a given domain. Especially a randomized enumeration
order enables the generation of more diverse test data. Yet, labeling options of
integrated solvers like CLP(FD) can already be used.

6.2 Combining Solvers

Of course, a solver like the one we outlined above would still be too weak to
efficiently support the constraints we discussed in Section 1. In consequence, we
envision an integration of a CLP-based solver and the other solvers discussed in
Section 3 into a combined solving procedure. This could be done following the
approach we used for first-order logic in prior work [23].

A more simple strategy would be to use multiple solvers at once and returning
the first result computed. This will have a performance benefit, given that the
solvers described in Section 3 have diverse approaches and mixed performances
in certain situations. Implementing such a portfolio is somewhat complicated,
since there is no standardized interface for constraint solvers [25], leading to a
large overhead translating constraints in between solvers. However, a promising
draft for an interface [32] has been proposed recently.

7 Conclusion

In this paper, we discussed how synthetic test data can be generated and what
the common pitfalls are. We discussed currently available solvers over strings
and outlined that string constraint solving has made considerable progress re-
cently. However, hurdles remain and generation of artificial test data remains
complicated at least.

We implemented a simple prototype of a string constraint solver based on
constraint logic programming and classical domain propagation. While it does



not yet offer all features desired, our prototype shows that our approach is fea-
sible and promising.

However, we believe that no single solver will be able to handle all require-
ments sufficiently and that reimplementing features commonly found in other
solvers might not be worthwhile. In consequence, we think that an integration of
solvers such as the one discussed in Section 6.2 is very promising, and we hope
to be able to lift our results for first-order-logic to string domains in the future.
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