Experience Report on a Student-Organized Al Course

Sebastian Krings
sebastian.krings@uni-duesseldorf.de
Heinrich Heine University
Diisseldorf, Germany

ABSTRACT

As curricula are mostly centered around the specializations of fac-
ulty members, students are often seen purely as consumers of
knowledge.

In contrast, in the course presented in this experience report, we
gave as much control to the attendees as possible. As the course was
overbooked, we had to use an innovative format to search strength
in numbers rather than limiting the number of participants. We
crowdsourced lectures, practices and even the exam. This allowed
our students to become (co-)producers rather than consumers of
knowledge.

Along with presenting our methodology, we evaluate whether
our approach was successful and whether it could serve as an
example for others.

CCS CONCEPTS

« Social and professional topics - Computing education pro-
grams; Model curricula; Information systems education; Student
assessment; Adult education.

KEYWORDS

student self-organization, artificial intelligence, experience report,
course design, crowdsourcing

ACM Reference Format:

Sebastian Krings. 2022. Experience Report on a Student-Organized Al
Course. In Proceedings of the 27th ACM Conf. on Innovation and Technology
in Computer Science Education Vol 1 (ITiCSE 2022), July 8-13, 2022, Dublin,
Ireland. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3502718.
3524805

1 INTRODUCTION

The Software Engineering and Programming Languages group at
the University of Diiesseldorf teaches courses on logic program-
ming, in particular using Prolog [3] as a programming language.
While the group’s research is centered around software verification
techniques, Prolog is more commonly used in artificial intelligence,
mostly to develop expert systems and for language processing. Ad-
ditionally, Prolog can be used to implement common Al algorithms
for games quite easily as we show in various examples throughout
our lectures.

In consequence, we had several requests by students to extend
our lecture portfolio by a course on artificial intelligence. However,

® This work is licensed under a Creative Commons Attribution
BY International 4.0 License.

ITiCSE 2022, July 8-13, 2022, Dublin, Ireland

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9201-3/22/07.
https://doi.org/10.1145/3502718.3524805

at that time, we did not have the teaching resources to create a
full-blown lecture and thus decided on a lightweight seminar to
fulfil our student’s request.

In particular, we intended to broaden the scope beyond classical
applications of Prolog in Al and take into account modern machine
learning techniques, computer vision as well as ethical questions
regarding artificial intelligence. All the new topics would have
to be prepared and presented by students, leading to discussions
where appropriate. In particular, we wanted to increase student
involvement as much as possible, since it is linked with learning
success [2, 6]. The seminar was available as an elective course in the
CS curriculum. The workload was indicated as 5 or 7.5 ECTS credit
points depending on exam regulations for individual students.

However, we failed to set up a limit on the number of participants,
leading the course being overrun by slightly more than a hundred
registered students. Obviously, this is way too much for a classical
seminar, leaving us with two options:

o reducing the number of participants, ultimately disappoint-
ing numerous students, or

e switch to a new course format that embraces the high num-
ber of participants by crowdsourcing workload and, hope-
fully, creating interesting results.

As aresult, we had to replan the course, getting rid of the classical
seminar format and switch to a student-organized format in the
sense of a “Contributing Student Pedagogy” [7]. The new format
and how it was realized in practice will be described below. As
we deemed the course a success, the format was reused a year
later. Below, we will report on the general format and how the two
executions of the course were evaluated.

The rest of the paper is structured as follows: Section 2 gives an
overview over the course and its context, e.g., participants. Follow-
ing, we discuss supporting applications and E-learning techniques
in Section 3. A major point of criticism against student-organized
content, namely how to assure its quality, is addressed in Section 4.
Evaluation results based on student feedback is discussed in Sec-
tion 5. We conclude with future work and overall conclusions.

2 COURSE OVERVIEW
2.1 Participants

Below we give an overview over the participants of the course as far
as the course evaluation permits. Even though we had more than a
hundred students attending each of the two course iterations, only a
very small number of students answered the questionnaire: 19 in the
first iteration and 11 in the second one. Hence, the data presented
here and in Section 5 only represents the overall attendees to some
extent.

The course was attended by a diverse group of students, across
different semesters. While the course is aimed at the Bachelor’s

https://orcid.org/0000-0001-6712-9798
https://doi.org/10.1145/3502718.3524805
https://doi.org/10.1145/3502718.3524805
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3502718.3524805

Table 1: Bachelor / Master Students

first iteration second iteration

bachelor 78.9% 100%
master 26.3% 27.3%

Table 2: Current Semester of Attending Students

semester first iteration second iteration

4 26.3% 45.5%
5 5.3% 18.2%
6 36.8% 9.1%
7 0% 18.2%
8 10.5% 9.1%
9 5.3% 0%
10 10.5% 0%

Table 3: Female / Male Students

first iteration second iteration

female 23.1% 11.1%
male 76.9% 88.9%

level, we allowed both Bachelor and Master students to attend. By
doing so, we reacted to requests of a number of Master students
who finished their Bachelor’s degree before the course existed.
As a result, roughly a fourth of attending students were pursuing
some kind of Master’s degree as depicted in Table 1. Keep in mind,
that students might pursue different degrees simultaneously, e.g., a
Bachelor and a (different) Master. As a consequence, the values do
not add up to 100% as one might expect.

In consequence, students’ semesters of study range from four to
ten, as depicted in Table 2. Most students are inside their standard
period of study, attending the course between the fourth and sixth
semester. Again, students might be attending different degree pro-
grams at the same time, thus being counted for different semesters
of study as well. As above, the values might thus not add up to 100%
as expected.

Sadly, the standard student evaluation at the University of Diissel-
dorf does not provide us with correlations between degree program
and semester of study. Thus, we cannot draw further conclusions.

As shown in Table 3, in the first iteration, roughly a quarter of
the students was female. This is in line with the general number
of female students of computer science at that time. In the second
course execution, the percentage of female students dropped by
roughly 10%. So far, we have no explanation for this change.

Summarizing, we had a very diverse group of participants, includ-
ing all levels of background knowledge and prior study experience.
This suggested, that we would also have to deal with different level
of engagement and participation [13].

2.2 Course Outline

To handle both diversity and the large number of students present,
we decided to use the first lecture to discuss possible improvements
to the standard seminar format and to find areas of interest suitable
for most attendants.

In particular, we tried to foster the idea, that we are all in it
together and have to work collaboratively in order to enjoy a suc-
cessful course despite the challenges. This is in line with the idea of
collaborative learning [17], in which groups consisting of students
of different performance levels work towards a common goal. Col-
laborative learning is associated with a number of possible benefits,
ranging from social and psychological to academic advantages [18].

Furthermore, considering students as “co-producers” rather than
consumers of education and knowledge has been suggested and
linked to increased student satisfaction and outcome [12, 16].

With our initial goal being a successful course, we tried to iden-
tify the sub-goals that will lead us to it, all in collaboration with
our students. Together, we came up with the following set of tasks
needed to be done for a successful course:

select initial coverage of course topics,

creation of a script,

lecture design, i.e., the actual teaching,

creating tasks and exercises for repetition and exam prepa-
ration, and

o selecting tasks for the exam, marking and grading.

While the last item had to be done by the lecturers for obvious
reasons, all other items were given into student’s responsibility. We
predefined a selection of possible topics to be covered throughout
the seminar:

informed and uninformed search algorithms,
search algorithms for games,

expert systems,

constraint solving,

inductive logic programming,

object recognition,

speech recognition,

machine learning,

evolutionary algorithms,

decision trees,

concept of intelligence and perception,
ethical concerns and limits of artificial intelligence.

The predefined selection of topics ensures that even though most
of the course was student-controlled, all important topics would be
covered. In particular, the selection is in line with typical Al course
contents [26].

For each topic, students could decide between preparing a chap-
ter for the script (i.e., write a seminar paper) and preparing a lecture
(i.e., give seminar presentation). In addition, both groups should
create tasks for repetition and exam preparation and review other
contributions in a peer-review. Of course, during later iterations of
the course, students had to improve the existing script and papers
rather than creating new ones.

In particular, we wanted to make sure that all tasks available
foster a shift from self-explanation to interactive explanation as

defined by Ploetzner et al. [22]. As the original article does not sug-
gest that one is more efficient than the other, ensuring all students
have both perspectives on explanation seemed beneficial to us.

While the preparatory tasks foster self-explanation, presentation
and review support interactive explanation. As students could focus
more on delivering a live lecture or on delivering script content and
tasks, interactive explanation was included both for those selected
for presentation and for those students staying in the background.

This approach allows for a relatively broad selection of tasks
for each student to chose from. Having a multitude of options for
participation, ranging from ones with more publicity (e.g., give a
lecture or presentation) to ones that can be done at home, helped
us to offer options suitable for different kinds of students. Thus,
it helped us to reduce the effects of the consolidation of responsi-
bility [15], where certain students become the center of attention,
dominating the course and its interaction.

However, with increased diversity in the tasks, equity becomes
more questionable. We tried to keep both workload and learning
outcome roughly identical throughout different tasks:

e We could, for instance, increase or decrease the number of
assigned reviews, depending on the scope of the assigned
topic and whether a lecture was to be prepared or a seminar
paper had to be written.

o We advised excluding certain aspects of a topic or to go more
in-depth depending on the work done so far.

e Learning outcomes should be harmonized by reviewing lec-
tures and scripts (i.e., reviewing the work created by others)
or by answering repetition question created by others.

Yet, individual workload is both hard to measure and to con-
trol. As a consequence, some students had a considerable higher
workload than others (cf. Section 5).

Sadly, we have no usable data on how students evaluated fairness
of assignments, both w.r.t. kind of work and assigned / selected
topic. From our observation, there was no discontent regarding
equity and there was none voiced during evaluations. However,
this is anecdotal at best and needs to be evaluated further in coming
iterations of the course.

All tasks were supported using different E-Learning techniques
and other online applications, which will be discussed in detail in
Section 3.

The course ended with a classical exam used for summative
evaluation, mostly based on modified and extended versions of
the tasks submitted by the students. Additionally, we performed a
formative evaluation of course involvement, taking into account
preparation and presentation task as well as participation in the
online parts. The way of grading was of course again suggested by
and discussed with the students.

To our discontent, the overall outline was not fully in accor-
dance with the learning outcomes given in the module handbook.
The soft skill required for discussion and collaborative preparation
were not requested there and were not fully taken into account for
grading, effectively causing issues with the course’s constructive
alignment [1].

However, the additional skills acquired and trained are highly
requested by industry. Especially working in and managing projects

as well as working collaboratively are often listed as experiences
computer science students are lacking [23, 24].

3 E-LEARNING AND SUPPORTING
APPLICATIONS

To support our course we used ILIAS [14], a learning management
system popular in Germany. ILIAS was mainly used for coordina-
tion and self-evaluation. Furthermore, we relied on git, GitHub and
ITEX for cooperative script creation.

3.1 ILIAS Message Boards

ILIAS features message boards that can be added to course home
pages. We decided to use three message boards: one for organiza-
tional question, one for questions regarding course topics and one
to share and discuss further related topics and literature. The first
two were used quite seldom, mostly for questions regarding the
exam. The third one was filled by us quite frequently and was read
by most of the students. However, ILIAS reports every link as read
as soon as it is opened by a student, i.e., we have no way to tell
whether the additional material was thoroughly read. Given that it
was only seldom discussed we assume it was not. In summary, the
message boards did not add much to the course, especially given
the already high level of participatory elements.

3.2 Self-Evaluation using ILIAS

A substantial collection of tasks has been created in ILIAS, most of
them suitable for automatic correction. We were quite content with
the options offered by ILIAS (e.g., fill-in-the-blank texts, matching
and ordering tasks, numeric questions, image map questions) and
the options for automatic grading and feedback.

However, it was very complicated to set up access rights in a
way that would allow students to directly create course content on
ILIAS. While we could assign rights to individual tasks, working on
different tasks on and off in groups could not efficiently be allowed
without permitting basically anything. In consequence, we had
to manually create ILIAS content from students’ input, causing a
high workload for the lecturers, as they had to manually create
quizzes and other course content from the students’ input. Overall,
self-assessment was well received by the students, most tests were
run shortly before the following lecture and, of course, in the week
before the exam took place.

3.3 Selecting Papers for Script Inclusion

Due to the number of participants, we often had different students
write seminar papers on the same topic. In consequence, we had to
come up with a way to select the ones to be included in the script.

We did so using ILIAS’ capabilities for peer review, automatically
assigning all papers submitted to a selection of student reviewers.
To ensure common criteria for the reviews, we discussed how and
why peer review is performed at scientific conferences and what it
is supposed to ensure. In particular, we made clear that the script
should serve as a learning aid for the exam and that there will still
be room for improvement afterwards, i.e., reviews should help the
author improve. The reviews were mostly submitted on time and
were helpful (cf. Section 4).

3.4 Script Creation

The different seminar papers written by students have been in-
corporated into a single script. To write the script collaboratively,
we used git and GitHub. While these tools were initially created
for distributed software development, adopting certain tools and
workflows for the course was highly beneficial:

First, most students were already familiar with git and GitHub.
Furthermore, KIEX will be used by most students for their thesis.

Second, the access model of GitHub and the common git work-
flow suits well for our tasks. Students could create their individual
copy of the script and work on it, i.e., extend sections, add and mod-
ify examples, etc. Once satisfied with the results, students could
submit a request for integration into the main repository (called a
pull request). This request is not executed automatically. Rather, a
request has to be approved by two other students, which can check
for typos or other errors. As soon as a request has been approved,
lecturers could integrate the changes into the script with the click
of a button. Note that a pull request can be declined, ideally includ-
ing the reasons for the decision. In that case it is reported back to
the initial writer who can then improve the changes made to the
script and resubmit the request for integration. Again, the process
enforces the ideas of collaborative learning by enforcing common
decisions rather than individual ones [17].

Third, the script can be built and uploaded using GitHub’s con-
tinuous integration system. This ensures that the latest version of
the script is readily available for download and ensures updates
easily propagate to the students.

Overall, the resulting script is roughly 150 pages long and in-
cludes documentation and examples to most of the course topics.
It is completely written by our students, with only minor editorial
work by the lecturers. Later iterations of the course will of course
use the script and thus do not have to write extensive seminar
papers but rather extend, unify and improve existing chapters.

3.5 Reliance on CS Background

For this to work efficiently, being able to rely on knowledge taught
in other CS courses was highly beneficial. Collaboration using Git
and GitHub is taught in a programming practice course in the
second semester. At the same time, concepts such as branching,
merging and code reviews are known to most of the students and
usually no further explanation was needed. Furthermore, ETEXwill
be used for other reports and theses as well.

While our approach was easy to realize in a CS course, the same
approach could be transferred to non-CS courses with a little effort:

e Git and GitHub would have to be replaced by a toolchain
more suitable for non-developers, e.g., Google Docs, Collab-
ora or a plain wiki system.

e Peer reviews could be performed using common platforms
such as ILIAS or Moodle. Simultaneously, peer review could
be used to replace the review workflow based on pull re-
quests.

o There are several other software systems to support student-
generated assessments, e.g., Peerwise [4]. These systems
typically can be used without a CS background.

4 ASSURING LEARNING OUTCOMES

One of the most obvious concerns with a student-organized course
format is quality assurance. Intended learning outcomes should be
reached and students should reach a certain depth rather than only
staying on the surface of the topics we listed in Section 2.2.

Obviously, the format is limited by the ability of the students,
who usually have only limited knowledge about the subjects to
present as well as about pedagogic practices. As a result, quality of
teaching might be reduced despite the fact that we introduced peer
review for initial quality assurance.

Regarding the quality of peer assessments, a study performed
on classes on introductory programming confirms that peer as-
sessments can be as effective as tutor feedback if done right [9].
In the context of software engineering, Hamer et al., studied the
differences between peer and tutor feedback [8]. They report that
while tutor feedback is of higher quality overall (e.g., due to being
more precise), differences are negligible in areas such as offering
advice.

Pirttinen et al. [21] recently revalidated the previous findings
of Hamer et el. [9]. They used a tool called CrowdSorcerer [20] to
compare peer reviews of crowdsourced programming assignments.
One of their major results is that novices can review as well as more
experienced programmers. The same holds for creating assignments.
Even though general programming task do not fully compare to
the task crowdsourced in our course, this provides further evidence
that our approach is sensible.

While we cannot claim to be representative, we were happy with
the quality of the reviews performed by our students. Most reviews
where thorough, discussed both technical and stylistic issues and
made suggestions for improvement. While not all reviews reached
the desired quality, assigning multiple reviews per submission usu-
ally ensured receiving a high-quality review.

Student-generated questionnaires have been shown to be effec-
tive learning tools in the context of molecular biology [10] as well
as physics, chemistry and biology [11]. Furthermore, creating ques-
tionnaires is improving students understanding as well [5]. Thus,
both the content creators and the other students benefit.

To our knowledge, no representative study on the effectiveness
of student-generated content in the context of Al courses has been
performed yet.

In summary, the lecturer’s knowledge remains the foundation
of a successful course [25]. The overall question is to what extent
we have to use it for direct teaching rather than supporting tasks.

5 STUDENT EVALUATION

The course was evaluated using questionnaires, given out in the
last few weeks. Invitations to rate the course were sent out by mail
to all students enrolled.

The questionnaire used for the default course evaluation is stan-
dardized and could not be modified by us. Thus, we had no influence
on the questions asked or on the scale used. We could of course
have provided our own additional questionnaire, but wanted to
avoid bothering our students with two evaluations for the same
course.

As stated above, only a limited number of students participated
in the evaluation: 19 for the first iteration and 11 for the second

Table 4: Course Evaluation, mean (a) and median (1), scale
from 1 (= total agreement) to 5 (= total disagreement)

first iteration second iteration

a m a m
course is well-structured 23 2 15 2
course material is helpful 2.6 2 18 2
lecturer explains well 2.2 2 16 1
lecturer addresses questions 1.5 1 12 1
lecturer is motivated 1.6 1 12 1
satisfied with the course 25 2 2 2
was interested in topic before 1.3 1 13 2
learning outcome was high 3 3 21 2
lecturer support is helpful 1.6 1 15 1
course gives a good overview 2.2 2 16 2
good mixture of knowledge 2.5 2 17 2
transfer and discussion
100 — 537 -
18.2%
15.8%
” 80 9.1% a
g 9.1%
2
g o0 -
£ 47.4%
s
o 36.4%
R
20 -
31.6% 5
0

first iteration second iteration

O<thO1-2n02-3h [3-4h [4-5n

Figure 1: Weekly Time Spend for Preparation and Post-
processing

one. Evaluation results were presented to and discussed with the
students.

Table 4 shows the answers to the evaluation questions, giving
both mean and median on a scale from 1 (= total agreement) to 5 (=
total disagreement).

Overall, the course was well received, especially considering the
later executions. Course satisfaction ranges from 2 to 2.5 without
much delta between different iterations.

While the course was regarded as somewhat unstructured in
the first iteration, the existing script made structuring both easier
and more obvious in the second one. Of course, the existing script
increases the helpfulness of course material as well, as the second
question suggests. As interest and coverage of topics shifted, the

100 — -

80 — -

73%
60 84%

% of Participants

20 — R -

5%
11%

18%

first iteration second iteration

0 20% - 40% [160% - 80% [180% - 100%

Figure 2: Percentage of Lectures Attended

script was able to cover more detail than individual lectures. In
consequence, later course iterations tend to give a broader overview
of AL

Interestingly, the overall learning outcome is considered higher
for those course iterations that only had to improve the script rather
than write it from scratch. For now, we can only suspect that writing
consumed a lot of time not available for other topics anymore.

However, as show in Fig. 1, students participating in the first
course iteration did not spend significantly more time on prepara-
tion (i.e., preparing talks or seminar papers) and post-processing
(i.e., repeating content, doing exercises and learning for the exam).
While in the first course iteration numerous students (47.7%) only
spend one to two hours a week, in the second one only about 37%
of students did so. The number of students spending two to three
hours a week dropped from 15.8% to 9.1% in the second one. Over-
all, time spend for the course increases throughout the years, even
though script writing was mostly done.

Higher course attendance cannot be the reason for the increased
time requirements as shown in Fig. 2. Rather, attendance dropped
slightly during the years.

6 FUTURE WORK

For the coming iterations of our Al course, we want to focus on
different aspects. First, the argument against giving all control to
the students was that we would not be able to ensure an appropriate
learning outcome. This is somewhat in alignment with the empirical
evaluation we performed in Section 5, where students rated the
learning outcome as 3.0 and 2.1 (with one being the best, five the
worst score). While ratings increased in recently, we need a more
thorough and more objective evaluation, relying on pre- and post-
testing of desired outcomes.

Additionally, course evaluation suggested that we should aim
for a higher amount of discussion, rather than knowledge transfer.
To do so, we want to take some tasks collected for ILIAS and use

them as a starting point for peer instruction questions, following
the method outlined by Eric Mazur [19].

Furthermore, as discussed in Section 5, we do not fully under-
stand how the different tasks contribute to the number of lectures
attended and to the time students had to spend in preparation and
post-processing. In the future, we would like to evaluate in more
detail to what extent writing vs. improving a script contributes to
learning outcomes and time requirements.

Finally, we need to think of ways to continue with the course,
taking into account that material is more and more complete and ma-
ture. In consequence, the very interactive and participatory course
tends to degenerate into a classical lecture.

7 CONCLUSION

Summarizing, we have presented a student-run course on artificial
intelligence. During planing and execution, we realized different
aspects, that we assume transfer to other courses:

e Crowdsourcing can be quite powerful. We managed to in-
clude a diverse range of topics appropriately and cover them
in the script and tasks. However, course evaluations sug-
gested that learning outcome could be improved. Thus, we
have to evaluate to what extent shifting control hinders learn-
ing, e.g., because students spend too much time on course
management.

o Cooperative writing and script creation is easy using online
platforms. While GitHub is a natural choice in CS, we could
easily have used other online editors.

e Being in control appears to be highly motivating for students,
as it enables them to transition away from being knowledge
consumers only. While we do not have proper data to com-
pare crowdsourced to regular courses on that matter, the
high motivation despite the high workload (cf. Section 5)
points in that direction.

In conclusion, while we initially had doubts against a mostly
student-organized course, we are very content with the successful
outcome. An impressive collection of tasks and lectures has been
created by the participants. At the same time, students wrote chap-
ters to a lecture script and composed them based on peer-review,
resulting in a small script on Al that can be improved continuously
throughout upcoming iterations.

The benefits we observed are in line with many other case studies
on crowdsourcing in computer science. For an initial overview of
those, see Hamer et al. [7].

We believe that the overall approach extends beyond teaching Al
and even beyond teaching CS. While it can be implemented quite
easily by relying on tools and workflows known to CS students,
proper replacements are available. In fact, tools such as Peerwise [4]
do not rely on any CS background and can be used throughout
disciplines.

We suspect that using tools, workflows and approaches common
in a field to realize a student-led course format increase the chance
of success, as students can focus on the other aspects of a yet
unknown format.

ACKNOWLEDGMENTS

First, we would like to thank all participating students for being
curious and willing to experiment. The same holds for our supervis-
ing professor, who allowed us to play around rather than sticking
to what we always did. In addition, we thank Philipp Kérner for
many fruitful discussions regarding our approaches to teaching
both related to the course presented here and to CS in general.
Additionally, we would like to thank the didactics department of
the Heinrich Heine University for their support and advise.

REFERENCES

[1] John Biggs. 1996. Enhancing Teaching through Constructive Alignment. Higher
Education 32, 3 (1996), 347-364.

[2] John Bransford. 1979. Human cognition: Learning, understanding, and remember-
ing. Thomson Brooks/Cole.

[3] Alain Colmerauer and Philippe Roussel. 1996. History of Programming
languages—II. ACM, New York, NY, USA, Chapter The Birth of Prolog, 331-
367.

[4] Paul Denny, John Hamer, Andrew Luxton-Reilly, and Helen Purchase. 2008. Peer-
Wise. In Proceedings of the 8th International Conference on Computing Education
Research (Koli "08). Association for Computing Machinery, New York, NY, USA,
109-112.

[5] Paul Denny, Ewan Tempero, Dawn Garbett, and Andrew Petersen. 2017. Exam-
ining a Student-Generated Question Activity Using Random Topic Assignment.
In Proceedings ITiCSE (ITiCSE ’17). Association for Computing Machinery, New
York, NY, USA, 146-151.

[6] Linda Marie Fritschner. 2000. Inside the undergraduate college classroom: Faculty
and students differ on the meaning of student participation. The journal of higher
education 71, 3 (2000), 342-362.

[7] John Hamer, Quintin Cutts, Jana Jackova, Andrew Luxton-Reilly, Robert McCart-
ney, Helen Purchase, Charles Riedesel, Mara Saeli, Kate Sanders, and Judithe
Sheard. 2008. Contributing Student Pedagogy. SIGCSE Bull. 40, 4 (nov 2008),
194-212.

[8] John Hamer, Helen Purchase, Andrew Luxton-Reilly, and Paul Denny. 2015. A
comparison of peer and tutor feedback. Assessment & Evaluation in Higher
Education 40, 1 (2015), 151-164.

[9] John Hamer, Helen C. Purchase, Paul Denny, and Andrew Luxton-Reilly. 2009.

Quality of Peer Assessment in CS1. In Proceedings of the Fifth International

Workshop on Computing Education Research (ICER °09). Association for Computing

Machinery, New York, NY, USA, 27-36.

Dale Hancock, Nicole Hare, Paul Denny, and Gareth Denyer. 2018. Improving

large class performance and engagement through student-generated question

banks. Biochemistry and Molecular Biology Education 46, 4 (2018), 306-317.

Judy Hardy, S. Bates, M. M. Casey, Kyle W. Galloway, Ross K. Galloway, Alison E.

Kay, P. Kirsop, and H. McQueen. 2014. Student-Generated Content: Enhancing

learning through sharing multiple-choice questions. International Journal of

Science Education 36 (2014), 2180-2194.

Thorsten Hennig-Thurau, Markus F. Langer, and Ursula Hansen. 2001. Mod-

eling and Managing Student Loyalty: An Approach Based on the Concept of

Relationship Quality. Journal of Service Research 3, 4 (2001), 331-344.

[13] Jay R Howard, George H James III, and David R Taylor. 2002. The consolidation

of responsibility in the mixed-age college classroom. Teaching Sociology (2002),

214-234.

ILIAS open source e-Learning Society. 2022. ILIAS. http://www.ilias.de, Last

accessed on 2022-03-21.

David Karp and William C. Yoels. 1976. The college classroom: Some observations

on the meanings of student participation. Sociology & Social Research 60 (07 1976),

421-439.

Theuns Kotzé and P J. du Plessis. 2003. Students as ’co-producers’ of education: A

proposed model of student socialisation and participation at tertiary institutions.

Quality Assurance in Education 11 (12 2003), 186-201.

[17] Marjan Laal and Mozhgan Laal. 2012. Collaborative learning: what is it? Procedia -
Social and Behavioral Sciences 31 (2012), 491-495. World Conference on Learning,
Teaching & Administration - 2011.

[18] Marjan Laal, Azadeh Sadat Naseri, Mozhgan Laal, and Zhina Khattami-
Kermanshahi. 2013. What do we Achieve from Learning in Collaboration?
Procedia - Social and Behavioral Sciences 93 (2013), 1427-1432.

[19] Eric Mazur. 1996. Peer Instruction. Prentice Hall.

[20] Nea Pirttinen, Vilma Kangas, Irene Nikkarinen, Henrik Nygren, Juho Leinonen,
and Arto Hellas. 2018. Crowdsourcing Programming Assignments with Crowd-
Sorcerer. In Proceedings of the 23rd Annual ACM Conference on Innovation and
Technology in Computer Science Education (ITiCSE 2018). Association for Comput-
ing Machinery, New York, NY, USA, 326-331.

[10

[11

=
)

[14

[15

[16

http://www.ilias.de

[21]

[22]

[23]

Nea Pirttinen, Vilma Kangas, Henrik Nygren, Juho Leinonen, and Arto Hellas.
2018. Analysis of Students’ Peer Reviews to Crowdsourced Programming As-
signments. In Proceedings of the 18th Koli Calling International Conference on
Computing Education Research (Koli Calling ’18). Association for Computing
Machinery, New York, NY, USA.

Rolf Ploetzner, Pierre Dillenbourg, Michael Preier, and David Traum. 1999. Learn-
ing by explaining to oneself and to others. Collaborative learning: Cognitive and
computational approaches 1 (1999), 103-121.

Alex Radermacher and Gursimran Walia. 2013. Gaps Between Industry Expec-
tations and the Abilities of Graduates. In Proceeding of the 44th ACM Technical
Symposium on Computer Science Education (SIGCSE ’13). ACM, New York, NY,

[24

[25

[26

]

]
]

USA, 525-530.

Alex Radermacher, Gursimran Walia, and Dean Knudson. 2014. Investigating the
Skill Gap Between Graduating Students and Industry Expectations. In Proceedings
of the 36th International Conference on Software Engineering (ICSE Companion
2014). ACM, New York, NY, USA, 291-300.

Lee Shulman. 1987. Knowledge and Teaching: Foundations of the New Reform.
Harvard Educational Review 57, 1 (1987), 1-23.

Michael Wollowski, Robert Selkowitz, Laura E. Brown, Ashok Goel, George
Luger, Jim Marshall, Andrew Neel, Todd Neller, and Peter Norvig. 2016. A Survey
of Current Practice and Teaching of Al In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence (AAAI'16). AAAI Press, 4119-4124.

	Abstract
	1 Introduction
	2 Course Overview
	2.1 Participants
	2.2 Course Outline

	3 E-Learning and Supporting Applications
	3.1 ILIAS Message Boards
	3.2 Self-Evaluation using ILIAS
	3.3 Selecting Papers for Script Inclusion
	3.4 Script Creation
	3.5 Reliance on CS Background

	4 Assuring Learning Outcomes
	5 Student Evaluation
	6 Future Work
	7 Conclusion
	Acknowledgments
	References

