
From Software Specifications to Constraint
Programming

Stefan Hallerstede1, Miran Hasanagić1, Sebastian Krings2, Peter Gorm Larsen1
and Michael Leuschel2

1 Department of Engineering, Aarhus University, Denmark
2 University of Düsseldorf, Düsseldorf, Germany

Abstract. Non-deterministic specifications play a central role in the use
of formal methods for software development. Such specifications can be
more readable, but hard to execute efficiently due to the usually large
search space. Constraint programming offers advanced algorithms and
heuristics for solving certain non-deterministic models. Unfortunately,
this requires writing models in a form suitable for efficient solving where
the readability typically required from a specification is lost. Tools like
ProB attempt to bridge this gap by translating high-level first-order pred-
icate logic specifications into formal models suitable for constraint solv-
ing. In this paper we study potential improvements to this methodology
by (1) using refinement to transform specifications into models suitable
for efficient solving, (2) translating first-order predicates directly into the
OscaR framework and (3) using different kinds of solvers as a back end.
Formal verification by proof ensures the correctness of the solution of the
model with respect to the specification.

1 Introduction

State-based modelling methods like B and VDM support writing abstract spec-
ifications and implement them by refinement. Refinement is carried out semi-
automatically, leading to deterministic implementations which are amenable to
automatic code generation. A long term ambition of software tools like ProB [17]
is to allow users to write very high-level specifications, which are easy to read
and write, amenable to formal proof and can yet still be executed efficiently.
In other words, specifications are viewed as non-deterministic programs, where
constraint solving is used to compute solutions to their formal specifications [18].
Still, the efficient solution of hard constraint satisfaction problems often requires
an encoding of formal descriptions of the problems that is difficult to compre-
hend. Such concerns turn specifications into non-deterministic implementations
and open up the possibility for programming errors just as in the case of deter-
ministic implementations. As a consequence, we benefit less from the declarative
paradigm than we would expect. In this paper we propose to use formal re-
finement as a method to relate formal models SPEC that describe problems
at a high level of abstraction to formal models AIMP at a lower level of ab-
straction targeting constraint solvers. In the same way as for the deterministic

case, refinement achieves correctness with respect to an easier to understand
abstract specification. Figure 1 illustrates the approach. The low-level models

SPEC REFN
re
fin
em

en
t AIMP

O
sc

a
R
/C

P

AIMP

C
L
P
(F

D
)

AIMP

S
A
Tre
fin
em

en
t

CP
OscaR

CLP(FD)
ProB

SAT
ProB

tr
an
sla

tio
n

Fig. 1. Refinement and translation of abstract models

can be translated into different frameworks like Constraint Programming (CP),
Constraint Logic Programming over Finite Domains (CLP(FD)) or SAT for effi-
cient execution according to their “flavour”. The different models may still share
modelling concepts but use specific concepts with efficient representations in the
target frameworks. In order to ease formal refinement proofs, typically several
refinement steps REFN are used before reaching an implementation (AIMP
here).

ProB [17] is a tool that can execute high-level models described in first-order
predicate logic with set theory by translating them into different frameworks,
in particular, CLP(FD) and SAT. We use the OscaR library [22] as an addi-
tional target bypassing ProB to experiment with different translations into a
CP framework. The objective is to extend ProB eventually also with a CP trans-
lation. As a result of this approach ProB will be capable of providing an efficient
target for the translation of a given model. Furthermore, we obtain a method-
ology to compare the performance of different frameworks as we can prove that
they encode the same model while still exploiting their respective strengths. Fi-
nally, beside performance we are also interested in refutation completeness, in
particular. Some search heuristics sacrifice refutation completeness in favour of
performance. In some practical situations this is acceptable when the alternative
is for the search to time out. Of course, for the user of a specification method it
is essential to understand the significance of the answer obtained. In this paper
we deal with the two latter points. We briefly discuss the translations provided
by ProB and the one we use for OscaR. We compare the performance of the
different translated models. Furthermore, since ProB can translate models at
different levels of abstraction, we can compare performance gains achieved by
refining models to lower levels of abstraction.

The following example illustrates the abstraction levels we have to bridge
from a high-level problem description to an efficient CP encoding. We use the
well-known n-queens problem [3] that is commonly used as a benchmark for
constraint solvers and allows evaluating the scalability of our approach. Details
are discussed in Section 4.
Example. Consider the following specification of the n-queens problem: n
queens need to be placed on a n-times-n board such that no queen can attack
another. Let n be a (non-negative) integer constant. Let NQABS be the following

2

predicate, a specification of the n-queens problem in first-order predicate logic:

shape of the board︷ ︸︸ ︷
b ⊆ 1 .. n× 1 .. n∧

n queens︷ ︸︸ ︷
card b = n ∧

∀p, q · p 7→q ∈ b⇒
∀i · i 6= 0⇒ p+i7→q 6∈ b︸ ︷︷ ︸

horizontal

∧ p7→q+i 6∈ b︸ ︷︷ ︸
vertical

∧ p+i 7→q+i 6∈ b︸ ︷︷ ︸
“ \”-diagonal

∧ p+i7→q−i 6∈ b︸ ︷︷ ︸
“/”-diagonal

It captures the main characteristics of the problem: the shape of the board, the
number of queens and a constraint specifying that no queen must be placed on
the board such that it can be attacked by some queen p 7→q ∈ b on the board
horizontally, vertically or diagonally.3

The following specification NQCON is considered an abstract description
when the problem is to be solved by means of constraint programming:

b ∈ array 1 .. n to 1 .. n ∧ allDifferent (b)∧
allDifferent (λx · x ∈ 1 .. n | b(x) + x) ∧ allDifferent (λx · x ∈ 1 .. n | b(x)− x)

where b ∈ array A to B models an array and is defined to be a total function
from A to B (formally, dom b = A∧ ran b ⊆ B ∧ b−1 ; b ⊆ id) and allDifferent (b)
for an array b as b ; b−1 ⊆ id, that is, b is injective. CP frameworks usually
have optimised search heuristics for well-known constraints. See the study of
efficient solvers for the allDifferent constraint in [13], for instance. After all,
it requires some reasoning to see that any solution of the n-queens problem
described by NQCON is a solution to the specification NQABS . Refinement
bridges the gap between the two abstraction levels. It is tempting to ask for a
stronger relationship than refinement by requiring that no solutions are lost in
the implementation. However, this can be considered a design decision as one
could, e.g., wish to remove certain “unwanted” solutions.

If the approach described in this article is followed, then specification and
refinement give rise to a method of multi-paradigm programming where im-
perative, functional and logic program development styles are mixed. Program
refinement integrates imperative and logic programming, whereas the theories
used in the proofs contribute functional programming. All proofs presented in
this article have been carried out with the Isabelle proof assistant [20] in Is-
abelle/HOL, that supports this view directly.
Related Work. In [10] the authors argue that specifications should be non-exe-
cutable, being more expressive as well as providing a higher level of abstraction.
Moreover, it is stated that executable specifications, being close to a program-
ming language style, may introduce implementation bias together with over-
specification. In general the distinction between these two specification styles is
that a non-executable specification describes what to achieve, while the other
captures how to achieve it. Hence, the two styles require a trade-off involving
expressiveness against executability. A counterargument to [10] is discussed in [6]
showing how abstract specifications can be written to be executable often even
3 The term p 7→q denotes the pair with first component p and second component q.

3

correspond closely to logic programs. The current literature addressing this gap
focuses on translations from a formal model towards a constraint solver. For
example [5] and [15] presents translations from Z to Prolog and VDM to ABC,
respectively. However, such approaches compared to the methodology presented,
focuses solely on making specifications executable, and do not consider com-
bining refinement together with limiting the search space. In all of this work
executable and non-executable specifications are opposed to each other. In our
work specifications that are not readily executable are refined to executable ones.
These may be non-deterministic or deterministic.
Overview of this Article. The remainder of this paper is organised as fol-
lows. Section 2 describes our approach of specification, refinement and constraint
solving. It provides an example of an (admittedly simple) data refinement. This
work focuses on methodological issues of combining different formal methods
techniques and data refinement is one of the aspects we discuss. Section 3 dis-
cusses the translation of specifications into constraint programming languages.
It is important to be aware of this because these languages directly affect the
specifications that can be executed (just as is the case for other programming
languages). In Section 4 we discuss the n-queens problem in greater depth. The n-
queens problem is representative of combinatorial problems, in general. Whereas
the example from Section 2 makes use of data refinement, the n-queens problem
changes the structure of the specification during the refinement. Verified stan-
dard constraint programming models are derived by refinement. All the models
are executed in ProB to witness the performance gains (or lack thereof). The
final implementation is also executed in OscaR. The various models and proofs
are available at https://github.com/miranha/SpecCP.

2 Refinement and Constraint Programming

Software specifications are described conveniently using predicate logic together
with set theory, abstracting from details of data representation and program
execution. They are abstract models of software. The discussion of refinement in
this section follows conceptually the refinement notion of Event-B [1]. However,
we avoid the discussion of Event-B proof obligations and focus on the joint use
of refinement and constraint solving. We use first-order logic specifications with
set theory and integer arithmetic. Isabelle/HOL, which is used to prove the
refinement steps, is also used in other contexts to verify properties of Event-B
and VDM specifications [4,25]. The examples that we use in this article, however,
we have translated from and to Isabelle by hand into the dialect of the B-notation
used by ProB, which can be achieved straightforwardly.
Refinement. In some situations abstract models SPEC can be implemented
with reasonable effort as deterministic programs PROG . Specification SPEC is
not as efficiently executable as the deterministic implementation PROG . Re-
finement permits us to improve SPEC gradually, introducing more implemen-
tation details step by step until reaching PROG . There are various notions of
refinement. Implication is one of them [11]: REFN refines SPEC if and only

4

https://github.com/miranha/SpecCP

if REFN ⇒ SPEC . This notion can be extended to permit changes in the
data representation, say, replacing variable v by variable w. The relationship
is expressed by a predicate SIMR(w , v). This is referred to as data refinement
[24]. If SIMR(w, v) is functional of the shape v = SIMF (w), data refinement of
SPEC (v, v′) by REFN (w,w′) can be described as follows:

w = SIMG(v) ∧ REFN (w,w′) ∧ v′ = SIMF (w′)⇒ SPEC (v, v′)

where w = SIMG(v)⇒ v = SIMF (w). Now, SIMR is itself a specification and
can be implemented (or it may be an implementation already). If REFN , SIMF
and SIMG are executable, then we can compute SPEC in terms of them. In
order to be able to understand the solution produced by the implementation we
can use SIMF and SIMG to translate between the data representations. The
refinement relation is considered part of the implementation and implemented
itself. So, refinement is simply implication. For instance, we could sort an array
a in terms of another representation b,

b = SIMG(a) ∧ REFN (b, b′) ∧ a′ = SIMF (b′)⇒ SPEC (a, a′) .

More generally, we refine a specification SPEC by a sequential program
TOCON ;REFN ;TOABS , where TOCON translates into a suitable data rep-
resentation and TOABS translates back. Figure 2 shows how SPEC is refined.
In the examples treated in this article we only encounter functions of the sort

a a′

b b′

SPEC

REFN

TOCON TOABS

Fig. 2. Specification SPEC refined by specification TOCON ;REFN ;TOABS

SIMF and SIMG as described above.
This notion of refinement corresponds to guard refinement in Event-B where

the concrete guard of an event (resp. a state transition) must imply the abstract
guard [1]. It also corresponds to postcondition strengthening in VDM [14] or the
refinement calculus [2,19]. In all of these cases a predicate is used to specify a
successor state. In this article we focus on this predicate and use implication
to express refinement. It can be applied easily in various model-based formal
methods.

In some cases providing a deterministic implementation may be very difficult
and constraint programming can be used. Instead of using refinement to provide
algorithmic structure, it can be used to cast a predicate into a shape that can
be solved efficiently by a constraint solver.
Example. We illustrate this by means of the puzzle Who killed Agatha? [23].

“Someone in Dreadsbury Mansion killed Aunt Agatha. Agatha, the butler,
and Charles live in Dreadsbury Mansion, and are the only ones to live there.
A killer always hates, and is no richer than his victim. Charles hates no one
that Agatha hates. Agatha hates everybody except the butler. The butler hates

5

everyone not richer than Aunt Agatha. The butler hates everyone whom Agatha
hates. No one hates everyone. Who killed Agatha?”

Assume we have three distinct constants Agatha, butler and Charles. We
wish to determine the killer k in the following specification WKA(r, h, k)

Agatha ∈ (h \ r)[{k}] ∧ irreflexive(r) ∧ transitive(r) ∧ antisymmetric(r)∧
h[{Agatha}] ∩ h[{Charles}] = ∅ ∧ h[{Agatha}] = P \ {butler}∧
(∀x · x 7→Agatha 6∈ r⇒ butler 7→x ∈ h) ∧ h[{Agatha}]⊆h[{butler}]∧
(∀x · h[{x}] 6=P)

where P = {Agatha, butler ,Charles}, r models the relationship richer and h
models the relationship hates. This specification captures the informal descrip-
tion above. The use of symbolic constants improves readability. However, search-
ing for a solution for k this may not necessarily be the most efficient represen-
tation. Switching to integer constants I = 0 .. 2 instead, we could use them in
arithmetic expressions as in

∑
y∈h[{x}] y. We can map the values in I to values

in P by means of the function

abs(i) = if i = 0 then Agatha else (if i = 1 then butler else Charles)

and from P to I by means of the function

con(p) = if p = Agatha then 0 else (if p = butler then 1 else 2) .

Note that, i = con(p)⇒ p = abs(i). We can prove that WKB(s, j, `) given by

0 ∈ (j \ s)[{`}] ∧ irreflexive(s) ∧ transitive(s) ∧ antisymmetric(s)∧
j ⊆ I × I ∧ s ⊆ I × I ∧ j[{0}] ∩ j[{2}] = ∅ ∧ j[{0}] = I \ {1}∧
(∀x · x ∈ I ∧ x 7→0 6∈ s⇒ 1 7→x ∈ j) ∧ j[{0}]⊆j[{1}] ∧ (∀x · x ∈ I ⇒ j[{x}]6=I)

refines WKA(r, h, k). Formally,

s = {con(x) 7→ con(y) | x 7→ y ∈ r} ∧ j = {con(x) 7→ con(y) | x 7→ y ∈ h}∧
WKB(s, j , `) ∧ k = abs(`)⇒WKA(r, h, k) .

Note, that the equations in the first line describe functions. Finally, we arrive
at a shape of the specification WKC (s, j, `) that permits efficient execution by
a constraint solver,

` ∈ I ∧ 07→` ∈ j−1 ∧ 0 7→` 6∈ s−1 ∧
irreflexive(s) ∧ transitive(s) ∧ antisymmetric(s)∧
j ⊆ I × I ∧ s ⊆ I × I ∧ (∀x · x ∈ I ∧ 07→x ∈ j⇒ 2 7→x 6∈ j)∧
07→0 ∈ j ∧ 0 7→1 6∈ j ∧ 07→2 ∈ j ∧ (∀x · x ∈ I ∧ x 7→0 6∈ s⇒ 1 7→x ∈ j)∧
(∀x · x ∈ I ∧ 0 7→x ∈ j⇒ 1 7→x ∈ j) ∧ (∀x · x ∈ I ⇒

∑
y∈j[{x}]1 ≤ 2))

To translate this formula into a dedicated constraint programming model, we
would next replace some formulas to match with the library of the constraint pro-
gramming language. For example, we would replace

∑
y∈j[{x}] 1 by sum(j[{x}])

6

val I = 0 to 2
val l = CPIntVar(I)
val j = Array.fill(3,3)(CPBoolVar())
val s = Array.fill(3,3)(CPBoolVar())



D
ec
la
ra
ti
on

s

{val t = j.transpose; add(t(0)(l).isEq(1))}
{val t = s.transpose; add(t(0)(l).isEq(0))}
irrefl(I, s); trans(I, s); antisym(I, s)
I.foreach(i=>add((j(0)(i)) ==> (!j(2)(i))))
add(j(0)(2)); add(!j(0)(1)); add(j(0)(0))
I.foreach(i=>add(!s(i)(0) ==> j(1)(i)))
I.foreach(i=>add(j(0)(i) ==> j(1)(i)))
I.foreach(i=>add(sum(j(i)) <= 2))

 M
od

el

search{
binaryFirstFail(Seq(l))

}



So
lv
er

Fig. 3. OscaR model with solver for the puzzle “Who killed Agatha?”

in the last row. Furthermore, we would replace the relations j and s by cor-
responding two-dimensional boolean arrays. However, this representation is a
trivial rewriting of the formula above, replacing terms of the shape (x, y) ∈ z
by a(x, y) = TRUE, and we do not show it. Figure 3 shows how the model for
the puzzle could be translated to OscaR. The translation has been produced by
hand following the rules described in Section 3. It consists of a section of decla-
rations, the actual model and a call to the solver. The most interesting part for
this article is the development of models that can be analysed efficiently. Note,
the use of transpose in the OscaR model. This is an implementation concern
that is reflected by the use of the relational inverse in the abstract formula: the
first index of j and s must not be a CPIntVar.

The constraint solver of ProB can solve the models at all abstraction levels
that we have presented in this section. A set like P = {Agatha, butler ,Charles}
gets translated by ProB internally into the set {1, 2, 3}; as such the first data
refinement WKB is performed internally by ProB and not required by the user.
The translation of the constraint ∀x · h[{x}] 6= P into a sum constraint in WKC
is also not necessary: ProB has built-in support for set equality and inequality
and can handle the set inequality h[{x}] 6= P relatively efficiently.

3 Translation and Constraint Solving

This section discusses the translation approaches introduced in Section 1. Sec-
tion 3.1 discusses the use of specifications as constraint solving languages directly
with ProB, outlining some important concepts of the applied translations. Sec-
tion 3.2 outlines the translation of predicate logic statements from a specification
into a language for constraint solving in OscaR. Whereas the translation to Os-
caR requires the user to adopt certain data representations, ProB can also solve
the abstract specifications. In fact, internally ProB attempts to find efficient rep-
resentations to increase the speed of the search. However, no generally efficient
method exists [12]. A longer term goal of our work combining refinement with

7

translations is to permit writing specifications that steer the internal representa-
tions to gain more control over the efficiency while keeping the abstraction level
high. Independently of this, the approach used by ProB for finding the solution
to a non-deterministic specification influences the specification style for specific
problems. In other words, implementation concerns always shine through.

3.1 Translation in ProB

A key concept of ProB’s default constraint solver [8] is reification, i.e., repre-
senting the truth value of a constraint C by a boolean decision variable RC ∈ 0..1
so that RC = 1⇔ C. Reification is important for ProB to avoid choice points,
e.g., for P ∨ Q, ProB will set up the constraint similar to RP ∈ 0..1 ∧ (RP =
1 ⇔ P) ∧ RQ ∈ 0..1 ∧ (RQ = 1 ⇔ Q) ∧ (RP = 1 ∨ RQ = 1). The constraint
(RP = 1∨RQ = 1) is handled by ProB’s boolean constraint solver, while P and
Q can be handled by different solvers. Indeed, arithmetic predicates and opera-
tors like x + y ≥ 0 are mapped to the finite domain solver CLP(FD). Equality,
inequality, set membership and subset constraints are handled by a dedicated
solver in ProB itself.

In the worst case, universal quantifiers ∀x.Q ⇒ R get expanded when the
domain {x|Q} is known. However, there is special support for ∀x.x ∈ S ⇒ P (x):
here P will be checked for every element added to S, even when S is not yet fully
known. Certain universal quantifiers can be expanded into a conjunction: e.g.,
∀x.x ∈ 1..3⇒ P (x) gets automatically translated into P (1) ∧ P (2) ∧ P (3); this
enables reification of the entire quantified predicate. The treatment of existential
quantifiers is similar; in the worst case they are evaluated when all but the
quantified variables are known. However, some quantifiers can be expanded into
disjunctions: e.g., ∃x.x ∈ 1..3 ∧ P (x) gets translated into P (1) ∨ P (2) ∨ P (3).

As mentioned earlier, ProB provides alternate constraint solving backends:
a translation to SAT via Kodkod and a translation to SMTLib using Z3. The
SAT encoding via Kodkod performs well for constraints over relations and oper-
ators such as relational composition and transitive closure. It, however, requires
all base types to be finite. For the “Who killed Agatha?” of Section 2 the SAT
backend is slightly slower (60 ms vs 10 ms). For the n-queens problem in Sec-
tion 4, it is considerably slower than ProB’s default solver (e.g., over 5 seconds
compared to 10 ms for n = 16). The Z3 backend is even slower (e.g., over 6
seconds for n = 8). Hence, in the rest of the paper we have concentrated on the
default solver of ProB.

3.2 Translation to OscaR

OscaR (using many ideas of Comet [12]) supports the execution of non-deter-
ministic specifications, as well as permitting us to experiment easily with differ-
ent model representations and search heuristics. Furthermore, OscaR is a library
for Scala [21], so the used syntax is Scala syntax with the extensions made by
OscaR. A specification ∀z · p1(x, z) ∧ . . . pn(x, z) specifies values of variables x
to be computed, constrained by relationships among each other and variables z.

8

Universal quantifiers and conjunctions are preferred over existential quantifiers
and disjunctions as the latter may lead to backtracking. However, some uses do
lead to loss of efficiency and sometime even lead to performance improvements.
For instance, we use auxiliary variables to add additional constraints (sometimes
redundant but with an effect on performance). So a specification has the form
∃y · ∀z · p1(x, y, z)∧ . . . pn(x, y, z) where y corresponds to an auxiliary variable of
the corresponding constraint program. Generally, OscaR tracks domains of vari-
ables efficiently, while the search algorithms restrict the domains further in order
to minimise the remaining non-deterministic choices. By means of backtracking
OscaR is able to find multiple solutions. In comparison to OscaR, ProB is able
to find solutions for certain infinite problems and it will find all solutions for
finitely posed problems. For OscaR the latter property depends on the chosen
search heuristics. However, usually completeness is sacrificed for efficiency.

The OscaR CP solver adopts a modelling methodology using decision vari-
ables and constraints among them, similar to other CP solvers. Its general struc-
ture is based around three components as shown in Figure 3: a declaration of
the decision variables, a model and a search heuristic. The declaration intro-
duces the decision variables and their domains. The model component captures
the constraints for the decision variables. The search heuristic specifies a non-
deterministic search heuristic for finding a solution for the model. Usually the
declaration and model together are considered to be one component. We treat
them separate as this is relevant for the translation. The domains associated
with the different variables are highly relevant for the efficiency of the search
heuristic. We only discuss the translation for the declaration and the model, and
assume that a common search heuristic is to be applied to the model, such as bi-
nary first fail. The translation is indicated by the notation S cp

 P describing the
translation from specification element S to constraint programming construct P .
We describe the translation by way of examples. They are easy to understand
and generalise. For these translations the focus is on the extensions relevant for
a specification as provided by OscaR.
The Declarations. The basic data types allowed for decision variables sup-
ported by OscaR are boolean and integer types. An integer type CPIntVar must
be given a finite domain from which its values may be drawn. The boolean
type CPBoolVar is a subtype of integer with the domain of 0 and 1. The trans-
lation of integer and boolean domains as well as declaration of decision vari-
ables can be translated as follows, respectively: D = m .. n

cp
 val D = m to n,

i ∈ D cp
 val i = CPIntVar(D) and b ∈ B cp

 val b = CPBoolVar().
The Model. Once the decision variables have been declared together with
their domain, constraints can be added to the constraint store. In OscaR con-
straints are added to the constraint store by means of the function add(...).
When adding constraints, two important aspects of the constraints to consider
are conjunctions and disjunctions. Although both are of boolean type, they are
treated differently by OscaR to improve the performance of the search for a solu-
tion. Atomic predicates are translated by P cp

 add(Pcp) where Pcp is the atomic
predicate in OscaR syntax, for instance, the translation of x ≤ y is x.isLeEq(y).

9

A conjunction describes a collection of constraints each of which needs to
be true. They can be added separately to the constraint store. For example,
x = 5 ∧ y ≤ x

cp
 add(x.isEq(5)); add(y.isLeEq(x)). This is the common

approach for treating conjunctions in OscaR. The general form of this is of the
following shape P ∧Q cp

 P ′ ; Q′ where P and Q are translated to P ′ and Q′.
A disjunction describes a collection of constraints either of which needs to

be true. It cannot be divided into separate constraints as is the case with con-
junction. All separate constraints are implicitly conjoined. For this reason dis-
junctions are represented as boolean expressions within the constraint language.
The operators available for this are logical or (||), logical and (&&) as well as
implication (==>). This lifts the predicate into a constraint expression of the
OscaR constraint language. This is applied to the disjunction translation, for
example, x = 5 ∨ y ≤ x cp

 add(x.isEq(5) || y.isLeEq(x)), while the general
form is P ∨ Q cp

 add(Pcp || Qcp) where Pcp and Qcp are translations of the
conjuncts into OscaR syntax. Technically, Pcp and Qcp require a second layer in
the translation for constraint expressions but we do not develop this here. We
make the strong assumption that the disjuncts are atomic. This introduces an
implementation concern into the constraint modelling language. It is justified
by the following reasoning: representing operators within constraints creates an
additional layer for the search reducing its performance.4 So the larger portion
of a specification contains such constructs, the lower the performance will be.
Hence, generally it is discouraged to represent large parts of a constraint program
as constraint expressions because this negatively impact implementation perfor-
mance. Nonetheless, the connectives ||, && and ==> are very useful in OscaR (see
Fig. 3) but should be used as little as possible. In particular, for conjunction it
can usually be avoided.

We could add the rule P ∧ Q cp
 add(Pcp && Qcp) to the translation, e.g.

to deal with cases where conjunctions appear within disjunctions. However, we
are more interested to use refinement to arrive at efficient representations than
at maximising the class of translatable specifications. In any case, ProB which
is described above permits a large class of translations already. The objective
of the translation to OscaR is to achieve high performance. Generality is sec-
ondary. Whenever possible, disjunctions should be avoided. For instance, instead
of writing a specification x = 1∨ x = 2∨ x = 3 one can declare the domain of x
correspondingly. If that is not possible, one could also introduce a decision vari-
able y with domain 1 ..3 and use the constraint x = y. Computations concerning
constraints are very efficient! Of course, there will be cases where disjunctions
are unavoidable. Negation is available because the domains of the involved de-
cision variables are declared. As a result, negation may never lead to infinite
domains rendering the model non-executable. The specification must contain a
term x ∈ D providing the (finite) domain for each decision variable x. And each
universal quantification must provide a (finite) domain, that is, it must be of the
shape ∀x · x ∈ D⇒ P . Universal quantification is discussed next.

4 Private communication with Pierre Schaus.

10

A universal quantifier can be translated by adding individually each con-
straint described by way of the quantified variable with finite domain. For ex-
ample, ∀x · x ∈ 4 .. 7 ⇒ x > 3

cp
 (4 to 7).foreach(x => add(x>3)). The

Scala operator foreach iterates through all elements of the range (here (4 to
7)). The general form of the translation has the shape ∀x · x ∈ m.. n⇒P (x)

cp

(m to n).foreach(x => P ′(x)), where P ′(x) is the translation of P (x). Uni-
versal quantification is essentially treated like an indexed conjunction.

Finally, existential quantifiers are discussed next. If existential terms are
involved in a specification they must be lifted so that the specification has the
shape ∃y · p1(x, y) ∧ . . . pn(x, y) so that they can be treated as auxiliary variables.
The translation does not support existential quantifiers occurring inside universal
quantifiers. OscaR does not support this directly. In principle, the translation
could deal with this in the way ProB does (see the discussion in Section 3.1).
Whereas in the case of the universal quantifier the bound variable gets eliminated
in the translation, in the case of existential quantifiers they stay. They are treated
like the global variables but are not considered part of the result. As indicated in
the introduction of this section, they should be considered auxiliary variables.

4 Solving the N-Queens Problem

In the example “Who killed Agatha?” of Section 2 we demonstrated the change
of data representation. This permitted us to express a subset relationship as an
arithmetic expression. The problem statement remained structurally unchanged:
it is easy to see how the computed solution is related to the abstract specification.

In this section we change the specification structurally while keeping the data
representation by way of the n-queens problem. The encodings of the n-queens
problem are not new. Usually, one finds informal arguments that argue why a
certain encoding is correct (e.g. [12]). However, the smarter the encodings get,
the more likely errors occur in the corresponding models. This is no different
from the situation in sequential programming. Finally, we evaluate the various
models and compared there scalability.
Refinement of n-queens. The initial specification describes the problem in
terms of the geometry of the chess board. Numbering the rows and columns from
1 to n for some n larger than 0, we can describe the queens on which fields a
queen could attack arithmetically as indicated in Fig. 4. We can express that a

horizontal vertical diagonal diagonal

Q JJ Q

J

J

Q

J

J

Q

J

J

p+i 7→q p 7→q+i p+i 7→q+i p+i7→q−i

Fig. 4. Positions “J” on 3×3-board that can be attacked by a queen “Q” on position
p 7→q (where i ∈ {−1, 1})

queen at position p7→q cannot attack another queen by requiring that no queen

11

may be placed on a position it may reach, that is, p 7→q ∈ b implies

∀i · i 6= 0⇒ p+i7→q 6∈ b ∧ p 7→q+i 6∈ b ∧ p+i7→q+i 6∈ b ∧ p+i7→q−i 6∈ b ,

that no other queen is on a position that can be attacked by it. The complete
specification NQABS also specifying the board positions 1 .. n × 1 .. n and the
number of queens n to be placed on the board is easy to understand,

b ⊆ 1 .. n× 1 .. n ∧ card b = n ∧ ∀p, q · p 7→q ∈ b⇒
∀i · i 6= 0⇒ p+i7→q 6∈ b ∧ p 7→q+i 6∈ b ∧ p+i7→q+i 6∈ b ∧ p+i7→q−i 6∈ b

and relate to the informal statement of the n-queens problem. It relates to the
board geometry, the number of queens and the positions a queen placed on the
board may attack. Unfortunately, this specification is not efficient to execute.
The first problem we identify is the size of the board to consider. It is n2. Because
a queen can attack any other queen that is placed in the same column we can
exclude all configurations of queens on a board where more than one queen is on
any column. Thus, there must be precisely one queen on each column. Hence,
we can represent the board as an array in a first refinement NQARR

b ∈ array 1 .. n to 1 .. n∧
∀p, q · p7→q ∈ b⇒∀i · i 6= 0⇒ p+i7→q 6∈ b ∧ p+i7→q+i 6∈ b ∧ p+i7→q−i 6∈ b

Of course, it is no longer necessary to verify that at most one queen placed
in each column. The predicate ∀p, q · p7→q ∈ b⇒ ∀i · i 6= 0⇒ p+i7→q 6∈ b is a
slightly complicated way of saying that b is injective. This is expressed by the
formula allDifferent (b). When translating to constraint programming languages
like OscaR, predicates like allDifferent are translated into efficient representa-
tions in the constraint store. Typically, a library of such predefined constraint
predicates exists in constraint programming languages that permit performance
improvements when used. The only predicate that could still be improved is
∀p, i · i 6= 0⇒ p+i 7→b(p)+i 6∈ b ∧ p+i7→b(p)−i 6∈ b where we have used that b is
a total function from 1 .. n to 1 .. n to rewrite the predicate. We have

∀p, i, q · i 6= 0⇒ p+i7→b(p)+i 6= q 7→b(q) ∧ p+i7→b(p)−i 6= q 7→b(q)
⇐ ∀p, i, q · i 6= 0⇒ i7→i 6= q−p7→b(q)−b(p) ∧ i 7→−i 6= q−p 7→b(q)−b(p)
⇐ ∀p, i, q · i 6= 0⇒ i7→i 6= abs (q−p)7→abs (b(q)−b(p))
⇐ ∀p, q · p 6= q⇒ abs (q−p) 6= abs (b(q)−b(p)) (1)

Hence, NQARR is refined by NQMID which we define by

b ∈ array 1 .. n to 1 .. n∧
allDifferent (b) ∧ ∀p, q · p 6= q⇒ abs (q−p) 6= abs (b(q)−b(p))

Specification NQMID is often used in examples for constraint programming.
Furthermore, we have (∀p, q · p 6= q⇒ b(p) + p 6= b(q) + q ∧ b(p)− p 6= b(q)− q)
⇒ (1). Thus we can refine NQMID by NQCON , defined by

b ∈ array 1 .. n to 1 .. n ∧ allDifferent (b)∧
allDifferent (λx · x ∈ 1 .. n | b(x) + x) ∧ allDifferent (λx · x ∈ 1 .. n | b(x)− x)

12

The predicate allDifferent (a) is widely used in constraint programming. Infor-
mally, it is defined as: no value occurs more than once in the array a.

A formal refinement verifies that any solution computed for a refined specifi-
cation is also a solution of the initial specification. In addition, the proofs provide
an explanation for the correctness of the encodings.

Note that the way we have proved the refinements, we have not assured the
existence of a solution in the refined specifications. We could refine any specifica-
tion by false. One could prove the existence of a solution for each specification.
However, for specific values of n this is what a constraint solvers does: it finds
values for the decision variables that satisfy the specification.
Performance of the Specifications. We evaluate the performance of all
four specifications NQABS , NQARR, NQMID and NQCON , where ProB can
solve all while OscaR is only applied to NQCON using its built-in allDifferent
constraint. Additionally for ProB, we add NQPRM which uses a built-in predi-
cate for permutations and a random search heuristic and is otherwise identical to
NQCON . The specifications are evaluated for various board sizes ranging from
n = 8 to n = 1000, with a step size of 8. Benchmarks were run on AMD Opterons
with 2 GHz and four physical cores; up to three benchmarks were run in par-
allel. Measurements show the time in seconds taken to find one solution for the
corresponding specification of the board size n. Results are shown in Figure 5,
where missing combinations of boards size and solver are due to time-outs, i.e.,
the solver failed to produce an answer in 5 minutes.

All in all, benchmark results support our motivation to translate specifica-
tions to OscaR, as OscaR allows to explorate much larger models. First, note
that the most abstract specification NQABS only scales to n = 8. Next, the
more low-level NQARR and its following refinement NQMID display similar
performance and scale to at most n = 168. The least abstract model NQCON
scales to n = 600, while the random permutation version NQPRM only scales
slightly better. Finally, the OscaR version solves a board size of up to n = 1000.

Additionally, note that OscaR displays a somewhat erratic behaviour, e.g.,
it is slower or cannot find a solution for certain smaller board sizes, while being
able to solve larger ones more efficiently. This might be due to both the internal
implementation of OscaR and the allDifferent constraint, allowing to exploit
symmetries for certain board sizes. For example the search of the state space
might be vulnerable to wrong choices, such that it might has to explore a large
sub-tree before getting on the right track again. With techniques such as con-
flict driven clause learning [27] and random restarts [7], the search can become
much more resilient. In this paper OscaR and ProB are used as representa-
tives of a CP solver, and the presented method can consider others as well. For
this purpose, the n-queens problem served well as a simple, yet scalable, bench-
mark for evaluating the methodology presented. As we have argued in [16], more
involved benchmarks allow for higher transferability of the benchmarks to real-
world applications. In this respect, in [9,26] we discuss real-world applications,
where constraint solving is used for solving and validating larger timetables and
railway network configurations.

13

0 100 200 300 400 500 600 700 800 900 1,000

100

101

102

Board Size (n)

T
im

e
(s
ec
on

ds
)

ProB (NQABS) ProB (NQCON) ProB (NQARR)
ProB (NQMID) ProB (NQPRM) OscaR (NQCON)

Fig. 5. Results of successful benchmarks, time-outs omitted

5 Conclusion

We have shown how refinement permits work with executable specifications
without committing early to implementation-biased data representations. For-
mal specification should be considered abstract programming and associated
reasoning techniques like refinement support for implemention. In principle, this
software is multi-paradigm: it may contain imperative, logic and functional parts
that appear seamless in abstract specifications. Compared to work like [19] where
programs are executable or non-executable, we change the focus once more and
say that specifications are executable or non-executable to emphasise the abstrac-
tion also in the final implementation. We have described a translation to OscaR
that we use for experimenting with translations and search heuristics. This com-
plements the use of ProB where making consistent changes to the translation
or search is more intricate. The preliminary evaluation to compare efficiency
of abstraction levels points towards the direction in which this research will be
continued: specifications are the better programs!
Acknowledgments. The work presented here is partially supported by the INTO-
CPS project funded by the European Commission’s Horizon 2020 programme
under grant agreement number 664047.

References

1. Abrial, J.R.: Modeling in Event-B – System and Software Engineering. Cambridge
University Press (2010)

2. Back, R.J., von Wright, J.: Refinement Calculus: A Systematic Introduction.
Springer (1998)

3. Bruen, A., Dixon, R.: The n-queens problem. Discrete Math. 12(4), 393–395 (1975)

14

4. Couto, L.D., Foster, S., Payne, R.J.: Towards verification of constituent systems
through automated proof. CoRR abs/1404.7792 (2014)

5. Dick, A.J.J., Krause, P.J., Cozens, J.: Computer Aided Transformation of Z into
Prolog, pp. 71–85. Springer (1990)

6. Fuchs, N.E.: Specifications are (preferably) executable. Software Engineering Jour-
nal 7(5), 323–334 (1992)

7. Gomes, C.P., Selman, B., Kautz, H.A.: Boosting Combinatorial Search Through
Randomization. In: Mostow, J., Rich, C. (eds.) AAAI. pp. 431–437. AAAI Press /
MIT Press (1998)

8. Hallerstede, S., Leuschel, M.: Constraint-based deadlock checking of high-level
specifications. TPLP 11(4–5), 767–782 (2011)

9. Hansen, D., Schneider, D., Leuschel, M.: Using B and ProB for Data Validation
Projects. In: Butler, M.J., Schewe, K.D., Mashkoor, A., Biró, M. (eds.) ABZ.
LNCS, vol. 9675, pp. 167–182. Springer (2016)

10. Hayes, I., Jones, C.B.: Specifications are not (necessarily) executable. Softw. Eng.
J. 4(6), 330–338 (1989)

11. Hehner, E.C.R.: A Practical Theory of Programming. Springer (1993)
12. Hentenryck, P.V., Michel, L.: Constraint-Based Local Search. MIT Press (2009)
13. van Hoeve, W.J.: The alldifferent constraint: A survey. arXiv cs/0105015 (2001)
14. Jones, C.B.: Systematic Software Development using VDM. Prentice Hall (1990)
15. Kans, A., Hayton, C.: Using ABC to Prototype VDM Specifications. SIGPLAN

Not. 29(1), 27–36 (1994)
16. Krings, S., Leuschel, M., Körner, P., Hallerstede, S., Hasanagic, M.: Three Is a

Crowd: SAT, SMT and CLP on a Chessboard. In: Calimeri, F., Hamlen, K.W.,
Leone, N. (eds.) PADL. LNCS, vol. 10702, pp. 63–79. Springer (2018)

17. Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method.
STTT 10(2), 185–203 (2008)

18. Leuschel, M., Schneider, D.: Towards B as a high-level constraint modelling lan-
guage – solving the jobs puzzle challenge. In: Ameur, Y.A., Schewe, K.D. (eds.)
ABZ 2014. LNCS, vol. 8477, pp. 101–116. Springer (2014)

19. Morgan, C.C.: Programming from specifications. Prentice Hall, 2nd edn. (1994)
20. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for

Higher-order Logic. Springer-Verlag (2002)
21. Odersky, M., al.: An Overview of the Scala Programming Language. Tech. Rep.

IC/2004/64, EPFL, Lausanne, Switzerland (2004)
22. OscaRTeam: OscaR: Scala inOR (2012), available from bitbucket.org/oscarlib
23. Pelletier, F.J.: Seventy-five problems for testing automatic theorem provers. J.

Autom. Reasoning 2, 191–216 (1986)
24. de Roever, W.P., Engelhardt, K.: Data Refinement: Model-oriented Proof Theories

and their Comparison, vol. 46. Cambridge University Press (1998)
25. Schmalz, M.: Term rewriting in logics of partial functions. In: Qin, S., Qiu, Z. (eds.)

ICFEM. LNCS, vol. 6991, pp. 633–650. Springer (2011)
26. Schneider, D., Leuschel, M., Witt, T.: Model-Based Problem Solving for University

Timetable Validation and Improvement. In: Bjørner, N., de Boer, F.S. (eds.) FM.
LNCS, vol. 9109, pp. 487–495. Springer (2015)

27. Silva, J.P.M., Sakallah, K.A.: GRASP: A Search Algorithm for Propositional Sat-
isfiability. IEEE Trans. Computers 48(5), 506–521 (1999)

15

	From Software Specifications to Constraint Programming

